Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Eur J Neurosci ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650479

RESUMO

Dopamine neurons signal the salience of environmental stimuli and influence learning, although it is less clear if these neurons also determine the salience of memories. Ventral tegmental area (VTA) dopamine neurons increase their firing in the presence of new objects and reduce it upon repeated, inconsequential exposures, marking the shift from novelty to familiarity. This study investigates how dopamine neuron activity during repeated familiar object exposure affects an animal's preference for new objects in a subsequent novel object recognition (NOR) test. We hypothesize that a single familiarization session will not sufficiently lower dopamine activity, such that the memory of a familiar object remains salient, leading to equal exploration of familiar and novel objects and weaker NOR discrimination. In contrast, multiple familiarization sessions likely suppress dopamine activity more effectively, reducing the salience of the familiar object and enhancing subsequent novelty discrimination. Our experiments in mice indicated that multiple familiarization sessions reduce VTA dopamine neuron activation, as measured by c-Fos expression, and enhance novelty discrimination compared with a single familiarization session. Dopamine neurons that show responsiveness to novelty were primarily located in the paranigral nucleus of the VTA and expressed vesicular glutamate transporter 2 transcripts, marking them as dopamine-glutamate neurons. Chemogenetic inhibition of dopamine neurons during a single session paralleled the effects of multiple sessions, improving NOR. These findings suggest that a critical role of dopamine neurons during the transition from novelty to familiarity is to modulate the salience of an object's memory.

3.
bioRxiv ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37961265

RESUMO

Dopamine neurons signal the salience of environmental stimuli, influencing learning and motivation. However, research has not yet identified whether dopamine neurons also modulate the salience of memory content. Dopamine neuron activity in the ventral tegmental area (VTA) increases in response to novel objects and diminishes as objects become familiar through repeated presentations. We proposed that the declined rate of dopamine neuron activity during familiarization affects the salience of a familiar object's memory. This, in turn, influences the degree to which an animal distinguishes between familiar and novel objects in a subsequent novel object recognition (NOR) test. As such, a single familiarization session may not sufficiently reduce dopamine activity, allowing the memory of a familiar object to maintain its salience and potentially attenuating NOR. In contrast, multiple familiarization sessions could lead to more pronounced dopamine activity suppression, strengthening NOR. Our data in mice reveals that, compared to a single session, multiple sessions result in decreased VTA dopamine neuron activation, as indicated by c-Fos measurements, and enhanced novelty discrimination. Critically, when VTA dopamine neurons are chemogenetically inhibited during a single familiarization session, NOR improves, mirroring the effects of multiple familiarization sessions. In summary, our findings highlight the pivotal function of dopamine neurons in familiarity and suggest a role in modulating the salience of memory content.

4.
medRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693601

RESUMO

Affective or mood disorders are a leading cause of disability worldwide. The serotonergic system has been heavily implicated in the complex etiology and serves as a therapeutic target. The serotonin transporter (SERT) is a major regulator of serotonin neurotransmission, yet the disease-relevance of impaired SERT function remains unknown. Here, we present the first identification and functional characterization of disruptive coding SERT variants found in patients with psychiatric diseases. In a unique cohort of 144 patients characterized by treatment-resistant chronic affective disorders with a lifetime history of electroconvulsive therapy, we identified two previously uncharacterized coding SERT variants: SERT-N217S and SERT-A500T. Both variants were significantly enriched in the patient cohort compared to GnomAD (SERT-N217S: OR = 151, P = 0.0001 and SERT-A500T: OR = 1348, P = 0.0022) and ethnicity-matched healthy controls (SERT-N217S: OR ≥ 17.7, P ≤ 0.013 and SERT-A500T: OR = ∞, P = 0.029). Functional investigations revealed that the mutations exert distinct perturbations to SERT function, but their overall effects converge on a partial loss-of-function molecular phenotype. Thus, the SERT-A500T variant compromises the catalytic activity, while SERT-N217S disrupts proper glycosylation of SERT with a resulting dominant-negative trafficking deficiency. Moreover, we demonstrate that the trafficking deficiency of SERT-N217S is amenable to pharmacochaperoning by noribogaine. Collectively, our findings describe the first disease-associated loss-of-function SERT variants and implicate serotonergic disturbances arising from SERT dysfunction as a risk factor for chronic affective disorders.

5.
J Biol Chem ; 299(8): 105063, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468107

RESUMO

Amphetamines (AMPHs) are substrates of the dopamine transporter (DAT) and reverse the direction of dopamine (DA) transport. This has been suggested to depend on activation of Ca2+-dependent pathways, but the mechanism underlying reverse transport via endogenously expressed DAT is still unclear. Here, to enable concurrent visualization by live imaging of extracellular DA dynamics and cytosolic Ca2+ levels, we employ the fluorescent Ca2+ sensor jRGECO1a expressed in cultured dopaminergic neurons together with the fluorescent DA sensor GRABDA1H expressed in cocultured "sniffer" cells. In the presence of the Na+-channel blocker tetrodotoxin to prevent exocytotic DA release, AMPH induced in the cultured neurons a profound dose-dependent efflux of DA that was blocked both by inhibition of DAT with cocaine and by inhibition of the vesicular monoamine transporter-2 with Ro-4-1284 or reserpine. However, the AMPH-induced DA efflux was not accompanied by an increase in cytosolic Ca2+ and was unaffected by blockade of voltage-gated calcium channels or chelation of cytosolic Ca2+. The independence of cytosolic Ca2+ was further supported by activation of N-methyl-D-aspartate-type ionotropic glutamate receptors leading to a marked increase in cytosolic Ca2+ without affecting AMPH-induced DA efflux. Curiously, AMPH elicited spontaneous Ca2+ spikes upon blockade of the D2 receptor, suggesting that AMPH can regulate intracellular Ca2+ in an autoreceptor-dependent manner regardless of the apparent independence of Ca2+ for AMPH-induced efflux. We conclude that AMPH-induced DA efflux in dopaminergic neurons does not require cytosolic Ca2+ but is strictly dependent on the concerted action of AMPH on both vesicular monoamine transporter-2 and DAT.


Assuntos
Anfetamina , Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Anfetamina/metabolismo , Anfetamina/farmacologia , Cocaína/metabolismo , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas Vesiculares de Transporte de Monoamina , Humanos , Linhagem Celular Tumoral
6.
Cell Rep ; 42(5): 112466, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37148870

RESUMO

Glucagon-like peptide-1 receptor (GLP-1R) agonists promote nicotine avoidance. Here, we show that the crosstalk between GLP-1 and nicotine extends beyond effects on nicotine self-administration and can be exploited pharmacologically to amplify the anti-obesity effects of both signals. Accordingly, combined treatment with nicotine and the GLP-1R agonist, liraglutide, inhibits food intake and increases energy expenditure to lower body weight in obese mice. Co-treatment with nicotine and liraglutide gives rise to neuronal activity in multiple brain regions, and we demonstrate that GLP-1R agonism increases excitability of hypothalamic proopiomelanocortin (POMC) neurons and dopaminergic neurons in the ventral tegmental area (VTA). Further, using a genetically encoded dopamine sensor, we reveal that liraglutide suppresses nicotine-induced dopamine release in the nucleus accumbens in freely behaving mice. These data support the pursuit of GLP-1R-based therapies for nicotine dependence and encourage further evaluation of combined treatment with GLP-1R agonists and nicotinic receptor agonists for weight loss.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Liraglutida , Camundongos , Animais , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Liraglutida/farmacologia , Nicotina/farmacologia , Dopamina , Obesidade/tratamento farmacológico , Obesidade/metabolismo
7.
ACS Chem Neurosci ; 14(9): 1622-1630, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37043174

RESUMO

A fundamental concept in neuroscience is the transmission of information between neurons via neurotransmitters, -modulators, and -peptides. For the past decades, the gold standard for measuring neurochemicals in awake animals has been microdialysis (MD). The emergence of genetically encoded fluorescence-based biosensors, as well as in vivo optical techniques such as fiber photometry (FP), has introduced technologically distinct means of measuring neurotransmission. To directly compare MD and FP, we performed concurrent within-animal recordings of extracellular dopamine (DA) in the dorsal striatum (DS) before and after administration of amphetamine in awake, freely behaving mice expressing the dopamine sensor dLight1.3b. We show that despite temporal differences, MD- and FP-based readouts of DA correlate well within mice. Down-sampling of FP data showed temporal correlation to MD data, with less variance observed using FP. We also present evidence that DA fluctuations periodically reach low levels, and naïve animals have rapid, predrug DA dynamics measured with FP that correlate to the subsequent pharmacodynamics of amphetamine as measured with MD and FP.


Assuntos
Anfetamina , Dopamina , Camundongos , Animais , Anfetamina/farmacologia , Microdiálise/métodos , Corpo Estriado , Transmissão Sináptica
8.
Proc Natl Acad Sci U S A ; 120(7): e2215230120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36749722

RESUMO

The dorsal (DS) and ventral striatum (VS) receive dopaminergic projections that control motor functions and reward-related behavior. It remains poorly understood how dopamine release dynamics across different temporal scales in these regions are coupled to behavioral outcomes. Here, we employ the dopamine sensor dLight1.3b together with multiregion fiber photometry and machine learning-based analysis to decode dopamine dynamics across the striatum during self-paced exploratory behavior in mice. Our data show a striking coordination of rapidly fluctuating signal in the DS, carrying information across dopamine levels, with a slower signal in the VS, consisting mainly of slow-paced transients. Importantly, these release dynamics correlated with discrete behavioral motifs, such as turns, running, and grooming on a subsecond-to-minute time scale. Disruption of dopamine dynamics with cocaine caused randomization of action selection sequencing and disturbance of DS-VS coordination. The data suggest that distinct dopamine dynamics of DS and VS jointly encode behavioral sequences during unconstrained activity with DS modulating the stringing together of actions and VS the signal to initiate and sustain the selected action.


Assuntos
Cocaína , Estriado Ventral , Camundongos , Animais , Dopamina , Recompensa
9.
Psychopharmacology (Berl) ; 240(1): 41-58, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36434307

RESUMO

RATIONALE: Attention is compromised in many psychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). While dopamine and noradrenaline systems have been implicated in ADHD, their exact role in attentional processing is yet unknown. OBJECTIVES: We applied the theory of visual attention (TVA) model, adapted from human research, to the rat 5-choice serial reaction time task (5CSRTT) to investigate catecholaminergic modulation of visual attentional processing in healthy subjects of high- and low-attention phenotypes. METHODS: Rats trained on the standard 5CSRTT and tested with variable stimulus durations were treated systemically with noradrenergic and/or dopaminergic agents (atomoxetine, methylphenidate, amphetamine, phenylephrine and atipamezole). TVA modelling was applied to estimate visual processing speed for correct and incorrect visual perceptual categorisations, independent of motor reaction times, as measures of attentional capacity. RESULTS: Atomoxetine and phenylephrine decreased response frequencies, including premature responses, increased omissions and slowed responding. In contrast, methylphenidate, amphetamine and atipamezole sped up responding and increased premature responses. Visual processing speed was also affected differentially. Atomoxetine and phenylephrine slowed, whereas methylphenidate and atipamezole sped up, visual processing, both for correct and incorrect categorisations. Amphetamine selectively improved visual processing for correct, though not incorrect, responses in high-attention rats only, possibly reflecting improved attention. CONCLUSIONS: These data indicate that the application of TVA to the 5CSRTT provides an enhanced sensitivity to capturing attentional effects. Unexpectedly, we found overall slowing effects, including impaired visual processing, following drugs either increasing extracellular noradrenaline (atomoxetine) or activating the α1-adrenoceptor (phenylephrine), while also ameliorating premature responses (impulsivity). In contrast, amphetamine had potential pro-attentional effects by enhancing visual processing, probably due to central dopamine upregulation.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulantes do Sistema Nervoso Central , Metilfenidato , Ratos , Humanos , Animais , Tempo de Reação , Cloridrato de Atomoxetina/farmacologia , Dopamina/farmacologia , Metilfenidato/farmacologia , Metilfenidato/uso terapêutico , Anfetamina/farmacologia , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Norepinefrina/farmacologia , Fenilefrina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia
10.
Nat Commun ; 13(1): 6714, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344565

RESUMO

Organic cation transporters (OCTs) facilitate the translocation of catecholamines, drugs and xenobiotics across the plasma membrane in various tissues throughout the human body. OCT3 plays a key role in low-affinity, high-capacity uptake of monoamines in most tissues including heart, brain and liver. Its deregulation plays a role in diseases. Despite its importance, the structural basis of OCT3 function and its inhibition has remained enigmatic. Here we describe the cryo-EM structure of human OCT3 at 3.2 Å resolution. Structures of OCT3 bound to two inhibitors, corticosterone and decynium-22, define the ligand binding pocket and reveal common features of major facilitator transporter inhibitors. In addition, we relate the functional characteristics of an extensive collection of previously uncharacterized human genetic variants to structural features, thereby providing a basis for understanding the impact of OCT3 polymorphisms.


Assuntos
Corticosterona , Proteínas de Transporte de Cátions Orgânicos , Humanos , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transporte Biológico , Corticosterona/farmacologia , Catecolaminas , Cátions/metabolismo , Transportador 1 de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo
11.
Cell Rep ; 40(13): 111431, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170827

RESUMO

The nanoscopic organization and regulation of individual molecular components in presynaptic varicosities of neurons releasing modulatory volume neurotransmitters like dopamine (DA) remain largely elusive. Here we show, by application of several super-resolution microscopy techniques to cultured neurons and mouse striatal slices, that the DA transporter (DAT), a key protein in varicosities of dopaminergic neurons, exists in the membrane in dynamic equilibrium between an inward-facing nanodomain-localized and outward-facing unclustered configuration. The balance between these configurations is inversely regulated by excitatory drive and DA D2 autoreceptor activation in a manner dependent on Ca2+ influx via N-type voltage-gated Ca2+ channels. The DAT nanodomains contain tens of transporters molecules and overlap with nanodomains of PIP2 (phosphatidylinositol-4,5-bisphosphate) but show little overlap with D2 autoreceptor, syntaxin-1, and clathrin nanodomains. The data reveal a mechanism for rapid alterations of nanoscopic DAT distribution and show a striking link of this to the conformational state of the transporter.


Assuntos
Autorreceptores , Proteínas da Membrana Plasmática de Transporte de Dopamina , Animais , Autorreceptores/metabolismo , Clatrina/metabolismo , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos , Fosfatidilinositóis/metabolismo , Proteínas Qa-SNARE/metabolismo
12.
Nat Commun ; 13(1): 4388, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902578

RESUMO

Dual-color single-molecule localization microscopy (SMLM) provides unprecedented possibilities for detailed studies of colocalization of different molecular species in a cell. However, the informational richness of the data is not fully exploited by current analysis tools that often reduce colocalization to a single value. Here, we describe a tool specifically designed for determination of co-localization in both 2D and 3D from SMLM data. The approach uses a function that describes the relative enrichment of one molecular species on the density distribution of a reference species. The function reframes the question of colocalization by providing a density-context relevant to multiple biological questions. Moreover, the function visualize enrichment (i.e. colocalization) directly in the images for easy interpretation. We demonstrate the approach's functionality on both simulated data and cultured neurons, and compare it to current alternative measures. The method is available in a Python function for easy and parameter-free implementation.


Assuntos
Microscopia , Imagem Individual de Molécula , Imagem Individual de Molécula/métodos
13.
Brain Neurosci Adv ; 6: 23982128221102256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721835

RESUMO

Negative urgency describes the tendency for rash and impulsive behaviour during negative emotional states and has been linked to a number of psychiatric disorders. However, there has been limited research on negative urgency as an explanatory mechanism for impulsivity in experimental animals. Such research has important implications for elucidating the neurobiology of negative urgency and thereby the development of future therapeutic interventions. In this study, we investigated the effects of negative urgency using a partial reinforcement schedule to increase the frequency of non-rewarded (i.e. frustrative) trials in the five-choice serial reaction time task, a widely used task to assess visual attention and impulsivity. Using a Markov chain model to analyse trial-by-trial outcomes we found that premature (i.e. impulsive) responses in the five-choice serial reaction time task were more likely to occur after a non-rewarded trial, and mostly after a previous premature trial. However, contrary to the frustration hypothesis of negative urgency, increasing the probability of reinforcement (p(R)) from p(R) = 0.5 to p(R) = 1 increased the number of premature responses in each session. Micro and macro levels of analyses revealed that impulsivity in the five-choice serial reaction time task is governed by at least two processes, one dependent on the overall level of reinforcement hypothesised to determine the state of behavioural activation, the second dependent on trial-by-trial outcomes consistent with negative urgency effects. These processes may depend on distinct neurobiological mechanisms and have relevance for neuropsychiatric disorders that implicate impulsive behaviours dependent on positive and negative affective states.

14.
Commun Biol ; 5(1): 578, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689020

RESUMO

Dopamine supports locomotor control and higher brain functions such as motivation and learning. Consistently, dopaminergic dysfunction is involved in a spectrum of neurological and neuropsychiatric diseases. Detailed data on dopamine dynamics is needed to understand how dopamine signals translate into cellular and behavioral responses, and to uncover pathological disturbances in dopamine-related diseases. Genetically encoded fluorescent dopamine sensors have recently enabled unprecedented monitoring of dopamine dynamics in vivo. However, these sensors' utility for in vitro and ex vivo assays remains unexplored. Here, we present a blueprint for making dopamine sniffer cells for multimodal dopamine detection. We generated sniffer cell lines with inducible expression of seven different dopamine sensors and perform a head-to-head comparison of sensor properties to guide users in sensor selection. In proof-of-principle experiments, we apply the sniffer cells to record endogenous dopamine release from cultured neurons and striatal slices, and for determining tissue dopamine content. Furthermore, we use the sniffer cells to measure dopamine uptake and release via the dopamine transporter as a radiotracer free, high-throughput alternative to electrochemical- and radiotracer-based assays. Importantly, the sniffer cell framework can readily be applied to the growing list of genetically encoded fluorescent neurotransmitter sensors.


Assuntos
Dopamina , Neurônios , Corpo Estriado/metabolismo , Dopamina/metabolismo , Aprendizagem , Neurônios/metabolismo , Neurotransmissores
15.
Cells ; 11(8)2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35455935

RESUMO

Well-tolerated and effective drugs for treating chronic pain conditions are urgently needed. Most chronic pain patients are not effectively relieved from their pain and suffer from debilitating drug side effects. This has not only drastic negative consequences for the patients' quality of life, but also constitute an enormous burden on society. It is therefore of great interest to explore new potent targets for effective pain treatment with fewer side effects and without addiction liability. A critical component of chronic pain conditions is central sensitization, which involves the reorganization and strengthening of synaptic transmission within nociceptive pathways. Such changes are considered as maladaptive and depend on changes in the surface expression and signaling of AMPA-type glutamate receptors (AMPARs). The PDZ-domain scaffold protein PICK1 binds the AMPARs and has been suggested to play a key role in these maladaptive changes. In the present paper, we review the regulation of AMPARs by PICK1 and its relation to pain pathology. Moreover, we highlight other pain-relevant PICK1 interactions, and we evaluate various compounds that target PICK1 and have been successfully tested in pain models. Finally, we evaluate the potential on-target side effects of interfering with the action of PICK1 action in CNS and beyond. We conclude that PICK1 constitutes a valid drug target for the treatment of inflammatory and neuropathic pain conditions without the side effects and abuse liability associated with current pain medication.


Assuntos
Proteínas de Transporte , Dor Crônica , Proteínas Nucleares , Proteínas de Transporte/metabolismo , Dor Crônica/tratamento farmacológico , Humanos , Proteínas Nucleares/metabolismo , Qualidade de Vida , Receptores de AMPA/metabolismo
16.
J Clin Invest ; 132(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35077398

RESUMO

Bin/amphiphysin/Rvs (BAR) domains are positively charged crescent-shaped modules that mediate curvature of negatively charged lipid membranes during remodeling processes. The BAR domain proteins PICK1, ICA69, and the arfaptins have recently been demonstrated to coordinate the budding and formation of immature secretory granules (ISGs) at the trans-Golgi network. Here, we identify 4 coding variants in the PICK1 gene from a whole-exome screening of Danish patients with diabetes that each involve a change in positively charged residues in the PICK1 BAR domain. All 4 coding variants failed to rescue insulin content in INS-1E cells upon knock down of endogenous PICK1. Moreover, 2 variants showed dominant-negative properties. In vitro assays addressing BAR domain function suggested that the coding variants compromised BAR domain function but increased the capacity to cause fission of liposomes. Live confocal microscopy and super-resolution microscopy further revealed that PICK1 resides transiently on ISGs before egress via vesicular budding events. Interestingly, this egress of PICK1 was accelerated in the coding variants. We propose that PICK1 assists in or complements the removal of excess membrane and generic membrane trafficking proteins, and possibly also insulin, from ISGs during the maturation process; and that the coding variants may cause premature budding, possibly explaining their dominant-negative function.


Assuntos
Diabetes Mellitus , Insulina , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Proteínas do Tecido Nervoso , Proteínas Nucleares/metabolismo , Ligação Proteica
17.
Neurochem Res ; 47(1): 127-137, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34347265

RESUMO

Sodium-coupled neurotransmitter transporters play a fundamental role in the termination of synaptic neurotransmission, which makes them a major drug target. The reconstitution of these secondary active transporters into liposomes has shed light on their molecular transport mechanisms. From the earliest days of the reconstitution technique up to today's single-molecule studies, insights from live functioning transporters have been indispensable for our understanding of their physiological impact. The two classes of sodium-coupled neurotransmitter transporters, the neurotransmitter: sodium symporters and the excitatory amino acid transporters, have vastly different molecular structures, but complementary proteoliposome studies have sought to unravel their ion-dependence and transport kinetics. Furthermore, reconstitution experiments have been used on both protein classes to investigate the role of e.g. the lipid environment, of posttranslational modifications, and of specific amino acid residues in transport. Techniques that allow the detection of transport at a single-vesicle resolution have been developed, and single-molecule studies have started to reveal single transporter kinetics, which will expand our understanding of how transport across the membrane is facilitated at protein level. Here, we review a selection of the results and applications where the reconstitution of the two classes of neurotransmitter transporters has been instrumental.


Assuntos
Proteínas de Transporte de Neurotransmissores , Sódio , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Neurotransmissores/metabolismo , Proteínas de Transporte de Neurotransmissores/química , Proteínas de Transporte de Neurotransmissores/metabolismo
18.
J Biol Chem ; 297(6): 101361, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34756883

RESUMO

The dopamine (DA) transporter (DAT) is part of a presynaptic multiprotein network involving interactions with scaffold proteins via its C-terminal PDZ domain-binding sequence. Using a mouse model expressing DAT with mutated PDZ-binding sequence (DAT-AAA), we previously demonstrated the importance of this binding sequence for striatal expression of DAT. Here, we show by application of direct stochastic reconstruction microscopy not only that the striatal level of transporter is reduced in DAT-AAA mice but also that the nanoscale distribution of this transporter is altered with a higher propensity of DAT-AAA to localize to irregular nanodomains in dopaminergic terminals. In parallel, we observe mesostriatal DA adaptations and changes in DA-related behaviors distinct from those seen in other genetic DAT mouse models. DA levels in the striatum are reduced to ∼45% of that of WT, accompanied by elevated DA turnover. Nonetheless, fast-scan cyclic voltammetry recordings on striatal slices reveal a larger amplitude and prolonged clearance rate of evoked DA release in DAT-AAA mice compared with WT mice. Autoradiography and radioligand binding show reduced DA D2 receptor levels, whereas immunohistochemistry and autoradiography show unchanged DA D1 receptor levels. In behavioral experiments, we observe enhanced self-administration of liquid food under both a fixed ratio of one and progressive ratio schedule of reinforcement but a reduction compared with WT when using cocaine as reinforcer. In summary, our data demonstrate how disruption of PDZ domain interactions causes changes in DAT expression and its nanoscopic distribution that in turn alter DA clearance dynamics and related behaviors.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Homeostase , Motivação , Domínios PDZ , Recompensa , Animais , Sítios de Ligação , Cocaína/administração & dosagem , Condicionamento Operante , Masculino , Camundongos , Ligação Proteica , Autoadministração
19.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34375312

RESUMO

Dysfunctional dopaminergic neurotransmission is central to movement disorders and mental diseases. The dopamine transporter (DAT) regulates extracellular dopamine levels, but the genetic and mechanistic link between DAT function and dopamine-related pathologies is not clear. Particularly, the pathophysiological significance of monoallelic missense mutations in DAT is unknown. Here, we use clinical information, neuroimaging, and large-scale exome-sequencing data to uncover the occurrence and phenotypic spectrum of a DAT coding variant, DAT-K619N, which localizes to the critical C-terminal PSD-95/Discs-large/ZO-1 homology-binding motif of human DAT (hDAT). We identified the rare but recurrent hDAT-K619N variant in exome-sequenced samples of patients with neuropsychiatric diseases and a patient with early-onset neurodegenerative parkinsonism and comorbid neuropsychiatric disease. In cell cultures, hDAT-K619N displayed reduced uptake capacity, decreased surface expression, and accelerated turnover. Unilateral expression in mouse nigrostriatal neurons revealed differential effects of hDAT-K619N and hDAT-WT on dopamine-directed behaviors, and hDAT-K619N expression in Drosophila led to impairments in dopamine transmission with accompanying hyperlocomotion and age-dependent disturbances of the negative geotactic response. Moreover, cellular studies and viral expression of hDAT-K619N in mice demonstrated a dominant-negative effect of the hDAT-K619N mutant. Summarized, our results suggest that hDAT-K619N can effectuate dopamine dysfunction of pathological relevance in a dominant-negative manner.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Transtornos Mentais/genética , Neurônios/metabolismo , Transtornos Parkinsonianos/genética , Adulto , Animais , Comportamento Animal , Transporte Biológico , Células Cultivadas , Bases de Dados Genéticas , Drosophila , Exoma , Feminino , Humanos , Hipocinesia/diagnóstico por imagem , Hipocinesia/genética , Hipocinesia/metabolismo , Masculino , Transtornos Mentais/metabolismo , Mesencéfalo/metabolismo , Camundongos , Pessoa de Meia-Idade , Atividade Motora/genética , Mutação , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/metabolismo , Fenótipo , Transmissão Sináptica , Tomografia Computadorizada de Emissão de Fóton Único , Transfecção
20.
J Biol Chem ; 296: 100629, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34237901

RESUMO

The dopamine transporter utilizes the transmembrane sodium gradient to mediate reuptake of dopamine from the extracellular space. The dopamine transporter can form dimers and possibly also higher order structures in the plasma membrane, and this oligomerization has been implicated in both trafficking and transport. However, we still do not fully understand its biological importance. A study by Sorkina et al. now describes a series of small molecules that link transporter conformation to oligomerization and endocytosis, providing an interesting step forward in an intricate dance.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Humanos , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...