Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 11(20): 2719-22, 2001 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-11591509

RESUMO

A series of alpha-amino-beta-sulphone hydroxamates was prepared and evaluated for potency versus MMP-13 and selectivity versus MMP-1. Various substituents were employed on the alpha-amino group (P(1) position), as well as different groups attached to the sulphone group extending into P(1)'. Low nanomolar potency was obtained for MMP-13 with selectivity versus MMP-1 of >1000x for a number of analogues.


Assuntos
Inibidores Enzimáticos/farmacologia , Ácidos Hidroxâmicos/farmacologia , Inibidores de Metaloproteinases de Matriz , Colagenases/metabolismo , Inibidores Enzimáticos/química , Ácidos Hidroxâmicos/química , Concentração Inibidora 50 , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 13 da Matriz , Relação Estrutura-Atividade
2.
Bioorg Med Chem Lett ; 11(20): 2723-5, 2001 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-11591510

RESUMO

A series of alpha-alkyl-alpha-amino-beta-sulphone hydroxamates was prepared and evaluated for potency versus MMP-2 and MMP-13, and for selectivity versus MMP-1. Low nanomolar potency was obtained with selectivity versus MMP-1 ranging from >10 to >1000. Selected compounds were orally bioavailable.


Assuntos
Alcanos/farmacologia , Inibidores Enzimáticos/farmacologia , Ácidos Hidroxâmicos/farmacologia , Inibidores de Metaloproteinases de Matriz , Alcanos/química , Colagenases/metabolismo , Inibidores Enzimáticos/química , Ácidos Hidroxâmicos/química , Concentração Inibidora 50 , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 13 da Matriz , Metaloproteinase 2 da Matriz/metabolismo , Relação Estrutura-Atividade
4.
J Med Chem ; 40(16): 2609-25, 1997 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-9258368

RESUMO

A new class of antifungal agents has been discovered which exert their activity by blockade of myristoylCoA: protein N-myristoyltransferase (NMT; EC 2.1.3.97). Genetic experiments have established that NMT is needed to maintain the viability of Candida albicans and Cryptococcus neoformans,the two principal causes of systemic fungal infections in immunocompromised humans. Beginning with a weak octapeptide inhibitor ALYASKLS-NH2 (2, Ki = 15.3 +/- 6.4 microM), a series of imidazole-substituted Ser-Lys dipeptide amides have been designed and synthesized as potent and selective inhibitors of Candida albicans NMT. The strategy that led to these inhibitors evolved from the identification of those functional groups in the high-affinity octapeptide substrate GLYASKLS-NH2 1a necessary for tight binding, truncation of the C-terminus, replacement of the four amino acids at the N-terminus by a spacer group, and substitution of the glycine amino group with an N-linked 2-methylimidazole moiety. Initial structure-activity studies led to the identification of 31 as a potent and selective peptidomimetic inhibitor with an IC50 of 56 nM and 250-fold selectivity versus human NMT. 2-Methylimidazole as the N-terminal amine replacement in combination with a 4-substituted phenacetyl moiety imparts remarkable potency and selectivity to this novel class of inhibitors. The (S,S) stereochemistry of serine and lysine residues is critical for the inhibitory activity, since the (R,R) enantiomer 40 is 10(3)-fold less active than the (S,S) isomer 31. The inhibitory profile exhibited by this new class of NMT ligands is a function of the pKa of the imidazole substituent as illustrated by the benzimidazole analog 35 which is about 10-fold less potent than 31. The measured pKa (7.1 +/- 0.5) of 2-methylimidazole in 31 is comparable with the estimated pKa (approximately 8.0) of the glycyl residue in the high-affinity substrate 1a. Groups bulkier than methyl, such as ethyl, isopropyl, or iodo, at the imidazole 2-position have a detrimental effect on potency. Further refinement of 31 by grafting an alpha-methyl group at the benzylic position adjacent to the serine residue led to 61 with an IC50 of 40 nM. Subsequent chiral chromatography of 61 culminated in the discovery of the most potent Candida NMT inhibitor 61a reported to date with an IC50 of 20 nM and 400-fold selectivity versus the human enzyme. Both 31 and 61a are competitive inhibitors of Candida NMT with respect to the octapeptide substrate GNAASARR-NH2 with Ki(app) = 30 and 27 nM, respectively. The potency and selectivity displayed by these inhibitors are dependent upon the size and orientation of the alpha-substituent. An alpha-methyl group with the R configuration corresponding to the (S)-methyl-4-alanine in 2 confers maximum potency and selectivity. Structural modification of 31 and 61 by appending an (S)-carboxyl group beta to the cyclohexyl moiety provided the less potent tripeptide inhibitors 73a and 73b with an IC50 of 1.45 +/- 0.08 and 0.38 +/- 0.03 microM, respectively. However, these tripeptides (73a and 73b) exhibited a pronounced selectivity of 560- and 2200-fold versus the human NMT. More importantly 73a displayed fungistatic activity against C albicans with an EC50 of 51 +/- 17 microM in cell culture. Compound 73b also exhibited a similar antifungal activity. An Arf protein gel mobility shift assay for monitoring intracellular myristoylation revealed that a single dose of 200 microM of 73a or 73b produced < 50% reduction in Arf N-myristoylation, after 24 and 48 h, consistent with their fungistatic rather than fungicidal activity. In contrast, the enantiomer 73d which had an IC50 > 1000 microM against C. albicans NMT did not exhibit antifungal activity and produced no detectable reduction in Arf N-myristoylation in cultures of C. albicans. These studies confirm that the observed antifungal activity of 73a and 73b is due to the attenuation of NMT activity and that NMT represents an attractive tar


Assuntos
Aciltransferases/antagonistas & inibidores , Amidas/síntese química , Antifúngicos/síntese química , Candida albicans/enzimologia , Dipeptídeos/síntese química , Inibidores Enzimáticos/síntese química , Imidazóis/síntese química , Aciltransferases/genética , Amidas/farmacologia , Antifúngicos/farmacologia , Cromatografia Líquida de Alta Pressão , Dipeptídeos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Imidazóis/farmacologia , Cinética , Modelos Químicos , Mimetismo Molecular , Estereoisomerismo , Relação Estrutura-Atividade
5.
J Biol Chem ; 272(18): 11874-80, 1997 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-9115247

RESUMO

Candida albicans produces a single myristoyl-CoA:protein N-myristoyltransferase (Nmt) that is essential for its viability. An ADP-ribosylation factor (Arf) is included among the few cellular protein substrates of this enzyme. An octapeptide (GLYASKLS-NH2) derived from a N-terminal Arf sequence was used as the starting point to identify elements critical for recognition by the acyltransferases's peptide-binding site. In vitro kinetic studies, employing purified Nmt and a panel of peptides with single Ala substitutions at each position of GLYASKLS-NH2, established that its Gly1, Ser5, and Lys6 residues play predominant roles in binding. ALYASKLS-NH2 was found to be an inhibitor competitive for peptide (Ki = 15.3 +/- 6.4 microM) and noncompetitive for myristoyl-CoA (Ki = 31.2 +/- 0.7 microM). A survey of 26 derivatives of this inhibitor, representing (i) a complete alanine scan, (ii) progressive C-terminal truncations, and (iii) manipulation of the physical-chemical properties of its residues 1, 5, and 6, confirmed the important stereochemical requirements for the N-terminal amine, the beta-hydroxyl of Ser5, and the epsilon-amino group of Lys6. Remarkably, replacement of the the N-terminal tetrapeptide of ALYASKLS-NH2 with an 11-aminoundecanoyl group produced a competitive inhibitor, 11-aminoundecanoyl-SKLS-NH2, that was 38-fold more potent (Ki = 0.40 +/- 0.03 microM) than the starting octapeptide. Removing the primary amine (undecanoyl-SKLS-NH2), or replacing it with a methyl group (dodecanoyl-SKLS-NH2), resulted in 26- and 34-fold increases in IC50, confirming the important contribution of the amine to recognition. Removal of LeuSer from the C terminus (11-aminoundecanoyl-SK-NH2) yielded a competitive dipeptide inhibitor with a Ki (11.7 +/- 0.4 microM) equivalent to that of the starting octapeptide, ALYASKLS-NH2. Substitution of Ser with homoserine, cis-4-hydroxyproline, or tyrosine reduces potency by 3-70-fold, emphasizing the requirement for proper presentation of the hydroxyl group in the dipeptide inhibitor. Substituting D- for L-Lys decreases its inhibitory activity >100-fold, while deletion of the epsilon-amino group (Nle) or masking its charge (epsilon-N-acetyl-lysine) produces 4-7-fold attenuations. L-His, but not its D-isomer, can fully substitute for L-Lys, producing a competitive dipeptide inhibitor with similar potency (Ki = 11.9 +/- 1.0 microM). 11-Aminoundecanoyl-SK-NH2 and 11-aminoundecanoyl-SH-NH2 establish that a simple alkyl backbone can maintain an appropriate distance between three elements critical for recognition by the fungal enzyme's peptide-binding site: a simple omega-terminal amino group, a beta-hydroxyl, and an epsilon-amino group or an imidazole. These compounds contain one peptide bond and two chiral centers, suggesting that it may be feasible to incorporate these elements of recognition, or functionally equivalent mimics, into a fully de-peptidized Nmt inhibitor.


Assuntos
Aciltransferases/química , Aciltransferases/metabolismo , Alanina , Candida albicans/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Ligação Competitiva , Cinética , Mutagênese Sítio-Dirigida , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
6.
J Med Chem ; 40(10): 1422-38, 1997 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-9154965

RESUMO

MyristoylCoA:protein N-myristoyltransferase (NMT) covalently attaches the 14-carbon saturated fatty acid myristate, via an amide bond, to the N-terminal glycine residues of a variety of cellular proteins. Genetic studies have shown that NMT is essential for the viability of the principal fungal pathogens which cause systemic infection in immunosuppressed humans and hence is a target for development of fungicidal drugs. We have generated a class of potent peptidomimetic inhibitors of the NMT from one such fungal pathogen, Candida albicans. The N-terminal tetrapeptide from a substrate analog inhibitor, ALYASKL-NH2, was replaced with an omega-aminoalkanoyl moiety having an optimal 11-carbon chain for inhibition (11-aminoundecanoyl-SKL-NH2, 3a, IC50 = 1.2 +/- 0.14 microM). A series of replacements for the C-terminal Leu established that residues containing a lipophilic side chain were most effective, with cyclohexylalanine having the greatest potency (3g, IC50 = 0.36 +/- 0.06 microM). Removal of the carboxamide moiety led to a metabolically stable dipeptide inhibitor containing an N-(cyclohexylethyl)lysinamide (17e, IC50 = 0.11 +/- 0.03 microM). Partial rigidification of the flexible aminoundecanoyl chain produced the dipeptide p-(omega-aminohexyl)phenacetyl-L-seryl-L-lysyl-N-(cyclohexyleth yl)amide (26b, IC50 = 0.11 +/- 0.04 microM). Subsequent incorporation of an alpha-methyl substituent into 26b provided the dipeptide analog [2-[p-(omega-aminohexyl)phenyl]propionyl]-L-seryl-L-lysyl-N-(cyclohex ylethyl)amide, a very potent inhibitor (48, IC50 = 0.043 +/- 0.006 microM), which retained the three essential elements required for recognition by the acyl transferase's peptide binding site.


Assuntos
Aciltransferases/antagonistas & inibidores , Amidas/química , Candida albicans/enzimologia , Inibidores Enzimáticos/química , Amidas/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Espectrometria de Massas de Bombardeamento Rápido de Átomos
7.
Biopolymers ; 43(1): 43-71, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-9174411

RESUMO

MyristoylCoA: protein N-myristoyltransferase (NMT) catalyzes the cotranslational covalent attachment of a rare cellular fatty acid, myristate, to the N-terminal Gly residue of a variety of eukaryotic proteins. The myristoyl moiety is often essential for expression of the biological functions for these proteins. Attachment of C14:0 alone provides barely enough hydrophobicity to allow stable association with membranes. The partitioning of N-myrisotylproteins is therefore often modulated by "switches" that function through additional covalent or noncovalent modifications. Candida albicans, the principal cause of systemic fungal infection in immunocompromised humans, contains a single NMT gene that is essential for its viability. The functional properties of the acylCoA binding site of human and C. albicans NMT are very similar. However, there are distinct differences in their peptide binding sites. An ADP ribosylation factor (Arf) is included among the few cellular protein substrates of the fungal enzyme. Alanine scanning mutagenesis of an octapeptide derived from an N-terminal Arf sequence (GLYASKLS-NH2) disclosed that Gly1, Ser5, and Lys6 play predominant roles in binding. ALYASKLS-NH2 is an inhibitor competitive for peptide [Ki(app) = 15.3 +/- 6.4 microM] and noncompetitive for myristoylCoA. Remarkably, replacement of the N-terminal tetrapeptide with an 11-aminoundecanoyl group results in a competitive inhibitor (11-aminoundecanoyl-SKLS-NH2) that is approximately 40-fold more potent [Ki(app) = 0.40 +/- 0.03 microM] than the starting octapeptide. Removal of Leu-Ser from the C-terminus generates a competitive dipeptide inhibitor (11-aminoundecanoyl-SK-NH2) with a Ki(app) of 11.7 +/- 0.4 microM, equivalent to that of the starting octapeptide. A derivative dipeptide inhibitor containing a C-terminal N-cyclohexylethyl lysinamide moiety has the advantage of being more potent (IC50 = 0.11 +/- 0.03 microM) and resistant to digestion by cellular carboxypeptidases. Rigidifying the flexible aminoundecanoyl chain results in very potent general NMT inhibitors (IC50 = 40-50 nM). Substituting a 2-methylimidazole for the N-terminal amine and adding a benzylic alpha-methyl group with R stereochemistry to the rigidifying element produces even more potent inhibitors (IC50 = 20-50 nM) that are up to 500-fold selective for the fungal compared to human enzyme. A related less potent member of this series of compounds is fungistatic. Its growth inhibitory effects are associated with a reduction in cellular protein N-myristoylation, judged using cellular Arf as a reporter. These studies establish that NMT is a new antifungal target.


Assuntos
Aciltransferases/antagonistas & inibidores , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Peptídeos/farmacologia , Antifúngicos/química , Candida albicans/enzimologia , Humanos , Relação Estrutura-Atividade
11.
J Med Chem ; 36(1): 95-100, 1993 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-8421294

RESUMO

Haloenol lactones are potent mechanism-based inhibitors of a novel class of calcium-independent phospholipases A2 which have been implicated as the enzymic mediators of membrane dysfunction during myocardial ischemia (Hazen, S. L.; et al. J. Biol. Chem. 1991, 266, 7227-7232). Herein we demonstrate that the ring size, hydrophobic group, and cryptic electrophile in the haloenol lactone moiety are important and modifiable determinants of the inhibitory potency of haloenol lactone-mediated inhibition of calcium-independent phospholipase A2. Direct comparisons between haloenol lactone-mediated inhibition of calcium-independent phospholipase A2 and the absence of inhibition with calcium-dependent phospholipase A2 further underscore the marked differences in the catalytic strategy employed by these two classes of intracellular phospholipases A2.


Assuntos
Lactonas/síntese química , Fosfolipases A/antagonistas & inibidores , Animais , Cães , Coração/efeitos dos fármacos , Lactonas/química , Lactonas/farmacologia , Miocárdio/enzimologia , Fosfolipases A2 , Estereoisomerismo , Relação Estrutura-Atividade
12.
Biochim Biophys Acta ; 1079(1): 23-8, 1991 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-1888761

RESUMO

[Phe(F5)8]angiotensin II was synthesized by the solid phase method and purified by reverse-phase HPLC. In rat uterus and rabbit aorta bioassays the analogue had 10 and 50%, respectively, of the contractile activity of angiotensin II and demonstrated antagonist properties. These findings illustrate that inversion of the Phe8 ring quadrupole moment in angiotensin II decreases agonist activity and invokes antagonist properties. 1H-NMR studies at 400 MHz in DMSO-d6 demonstrated the presence of cis and trans isomers in the ratio 1:3 due to restricted rotation of the His-Pro bond. Downfield shifts of the His C2 and C4 protons in [Phe(F5)]ANG II compared to ANG II suggest that the Phe(F5) residue may be involved in a parallel-plate ring pairing interaction with the imidazole group. However heteronuclear NOE studies, carried out by measuring the proton difference spectrum before and after saturation of the fluorine resonances, showed the absence of any NOE enhancement illustrating that electrostatic influences of the Phe(F5) ring occur at relatively long range.


Assuntos
Angiotensina II/metabolismo , Flúor/química , Fenilalanina/química , Sequência de Aminoácidos , Angiotensina II/química , Angiotensina II/isolamento & purificação , Animais , Aorta/química , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Conformação Proteica , Coelhos , Ratos , Útero/química
13.
J Biol Chem ; 266(15): 9732-9, 1991 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-2033063

RESUMO

The mechanism of catalysis of Escherichia coli-derived Saccharomyces cerevisiae myristoyl-CoA: protein N-myristoyltransferase (NMT) has been characterized. Previous studies indicated that a high affinity reaction intermediate forms between NMT and myristoyl-CoA in the absence of a peptide substrate. This complex has been further characterized using S-(2-oxo)pentadecyl-CoA, a nonhydrolyzable myristoyl-CoA analog. Binding studies involving this analog, as well as myristoylpeptide and CoA, have indicated that the CoA moiety of the acyl substrate is retained in the acyl-NMT complex prior to peptide addition. These structural data, along with kinetic studies of myristoylpeptide and CoA product inhibition, indicate that the mechanism of catalysis of NMT is ordered Bi Bi, with myristoyl-CoA binding to NMT occurring prior to peptide binding and CoA release taking place before release of acyl peptide. Further analyses of the interactions between NMT, acyl peptide, and CoA demonstrate that NMT is able to deacylate a myristoylpeptide in the presence of CoA.


Assuntos
Aciltransferases/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Catálise , Focalização Isoelétrica , Cinética , Dados de Sequência Molecular , Conformação Proteica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Especificidade por Substrato
14.
J Biol Chem ; 266(11): 7227-32, 1991 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-2016324

RESUMO

The majority of phospholipase A2 activity in myocardium is calcium-independent and selective for hydrolysis of plasmalogen substrate (Wolf, R. A., and Gross, R. W. (1985) J. Biol. Chem. 260, 7295-7303; Hazen, S. L., Stuppy, R. J., and Gross, R. W. (1990) J. Biol. Chem. 265, 10622-10630). Accordingly, identification of an inhibitor which selectively targets calcium-independent phospholipases A2 would facilitate elucidation of the biologic significance of this class of intracellular phospholipases. We now report that the haloenol lactone, (E)-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyran-2-one (Compound 1), is a potent, irreversible, mechanism-based inhibitor of myocardial calcium-independent phospholipase A2 which is greater than 1000-fold specific for inhibition of myocardial calcium-independent phospholipase A2 in comparisons with multiple calcium-dependent phospholipases A2. Mechanism-based inhibition of myocardial cytosolic calcium-independent phospholipase A2 by Compound 1 was established by demonstrating: 1) time-dependent irreversible inactivation; 2) covalent binding of [3H]Compound 1 to the purified phospholipase A2; 3) ablation of covalent binding of [3H]Compound 1 after chemical inactivation of phospholipase A2 enzymic activity; 4) identical inhibition of myocardial phospholipase A2 by Compound 1 in the absence or presence of nucleophilic scavengers; 5) Compound 1 is a substrate for myocardial calcium-independent phospholipase A2 resulting in the generation of the electrophilic alpha-bromomethyl ketone; 6) phospholipase A2 inhibition requires the in situ generation of the reactive electrophile (i.e. neither the alpha-bromomethyl ketone nor the diproteoenol lactone analog are inhibitory); and 7) concomitant attenuation of the inhibitory potency and the extent of covalent adduct formation in the presence of saturating substrate. Collectively, these results demonstrate that the haloenol lactone, Compound 1, is a substrate for, covalently binds to, and irreversibly inhibits canine myocardial cytosolic calcium-independent phospholipase A2.


Assuntos
Cálcio/farmacologia , Miocárdio/enzimologia , Fosfolipases A/metabolismo , Animais , Citosol/enzimologia , Cães , Eletroforese em Gel de Poliacrilamida , Cinética , Peso Molecular , Naftalenos/síntese química , Naftalenos/farmacologia , Fosfolipases A/antagonistas & inibidores , Fosfolipases A/isolamento & purificação , Fosfolipases A2 , Pironas/síntese química , Pironas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA