Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 24(1): 114-129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227837

RESUMO

The 2-week, virtual Future of the Search for Life science and engineering workshop brought together more than 100 scientists, engineers, and technologists in March and April 2022 to provide their expert opinion on the interconnections between life-detection science and technology. Participants identified the advances in measurement and sampling technologies they believed to be necessary to perform in situ searches for life elsewhere in our Solar System, 20 years or more in the future. Among suggested measurements for these searches, those pertaining to three potential indicators of life termed "dynamic disequilibrium," "catalysis," and "informational polymers" were identified as particularly promising avenues for further exploration. For these three indicators, small breakout groups of participants identified measurement needs and knowledge gaps, along with corresponding constraints on sample handling (acquisition and processing) approaches for a variety of environments on Enceladus, Europa, Mars, and Titan. Despite the diversity of these environments, sample processing approaches all tend to be more complex than those that have been implemented on missions or envisioned for mission concepts to date. The approaches considered by workshop breakout groups progress from nondestructive to destructive measurement techniques, and most involve the need for fluid (especially liquid) sample processing. Sample processing needs were identified as technology gaps. These gaps include technology and associated sampling strategies that allow the preservation of the thermal, mechanical, and chemical integrity of the samples upon acquisition; and to optimize the sample information obtained by operating suites of instruments on common samples. Crucially, the interplay between science-driven life-detection strategies and their technological implementation highlights the need for an unprecedented level of payload integration and extensive collaboration between scientists and engineers, starting from concept formulation through mission deployment of life-detection instruments and sample processing systems.


Assuntos
Júpiter , Marte , Saturno , Humanos , Meio Ambiente Extraterreno , Exobiologia/métodos
2.
Astrobiology ; 17(12): 1203-1218, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29227156

RESUMO

The search for life and habitable environments on other Solar System bodies is a major motivator for planetary exploration. Due to the difficulty and significance of detecting extant or extinct extraterrestrial life in situ, several independent measurements from multiple instrument techniques will bolster the community's confidence in making any such claim. We demonstrate the detection of subsurface biosignatures using a suite of instrument techniques including IR reflectance spectroscopy, laser-induced breakdown spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy. We focus our measurements on subterranean calcium carbonate field samples, whose biosignatures are analogous to those that might be expected on some high-interest astrobiology targets. In this work, we discuss the feasibility and advantages of using each of the aforementioned instrument techniques for the in situ search for biosignatures and present results on the autonomous characterization of biosignatures using multivariate statistical analysis techniques. Key Words: Biosignature suites-Caves-Mars-Life detection. Astrobiology 17, 1203-1218.


Assuntos
Carbonato de Cálcio/análise , Exobiologia/instrumentação , Meio Ambiente Extraterreno , Vida , Análise Espectral/instrumentação , Carbonato de Cálcio/química , Cavernas , Estudos de Viabilidade , Análise Espectral/métodos
3.
Astrobiology ; 17(6-7): 655-685, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067288

RESUMO

The Mars Organic Molecule Analyzer (MOMA) instrument onboard the ESA/Roscosmos ExoMars rover (to launch in July, 2020) will analyze volatile and refractory organic compounds in martian surface and subsurface sediments. In this study, we describe the design, current status of development, and analytical capabilities of the instrument. Data acquired on preliminary MOMA flight-like hardware and experimental setups are also presented, illustrating their contribution to the overall science return of the mission. Key Words: Mars-Mass spectrometry-Life detection-Planetary instrumentation. Astrobiology 17, 655-685.

4.
Int J Mass Spectrom ; 422: 177-187, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33005095

RESUMO

The Mars Organic Molecule Analyzer (MOMA), a dual-source, ion trap-based instrument capable of both pyrolysis-gas chromatography mass spectrometry (pyr/GC-MS) and laser desorption/ionization mass spectrometry (LDI-MS), is the core astrobiology investigation on the ExoMars rover. The MOMA instrument will be the first spaceflight mass analyzer to exploit the LDI technique to detect refractory organic compounds and characterize host mineralogy; this mode of analysis will be conducted at Mars ambient conditions. In order to achieve high performance in the Martian environment while keeping the instrument compact and low power, a number of innovative designs and components have been implemented for MOMA. These include a miniaturized linear ion trap (LIT), a fast actuating aperture valve with ion inlet tube. and a Microelectromechanical System (MEMS) Pirani sensor. Advanced analytical capabilities like Stored Waveform Inverse Fourier Transform (SWIFT) for selected ion ejection and tandem mass spectrometry (MS/MS) are realized in LDI-MS mode, and enable the isolation and enhancement of specific mass ranges and structural analysis, respectively. We report here the technical details of these instrument components as well as system-level analytical capabilities, and we review the applications of this technology to Mars and other high-priority targets of planetary exploration.

5.
Planet Space Sci ; 131: 70-78, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32818000

RESUMO

We present a laboratory reproduction of hypervelocity impacts of a carbon containing meteorite on a mineral substance representative of planetary surfaces. The physical conditions of the resulting impact plasma torch provide favorable conditions for abiogenic synthesis of protein amino acids: We identified glycine and alanine, and in smaller quantities serine, in the produced material. Moreover, we observe breaking of alanine mirror symmetry with L excess, which coincides with the bioorganic world. Therefore the selection of L-amino acids for the formation of proteins for living matter could have been the result from plasma processes occurring during the impact meteorites on the surface. This indicates that the plasma torch from meteorite impacts could play an important role in the formation of biomolecular homochirality. Thus, meteorite impacts possibly were the initial stage of this process and promoted conditions for the emergence of a living matter.

6.
Astrobiology ; 15(2): 104-10, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25622133

RESUMO

Evidence from recent Mars missions indicates the presence of perchlorate salts up to 1 wt % level in the near-surface materials. Mixed perchlorates and other oxychlorine species may complicate the detection of organic molecules in bulk martian samples when using pyrolysis techniques. To address this analytical challenge, we report here results of laboratory measurements with laser desorption mass spectrometry, including analyses performed on both commercial and Mars Organic Molecule Analyzer (MOMA) breadboard instruments. We demonstrate that the detection of nonvolatile organics in selected spiked mineral-matrix materials by laser desorption/ionization (LDI) mass spectrometry is not inhibited by the presence of up to 1 wt % perchlorate salt. The organics in the sample are not significantly degraded or combusted in the LDI process, and the parent molecular ion is retained in the mass spectrum. The LDI technique provides distinct potential benefits for the detection of organics in situ on the martian surface and has the potential to aid in the search for signs of life on Mars.


Assuntos
Exobiologia , Espectrometria de Massas , Percloratos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Cálcio/química , Carbonatos/química , Lasers , Magnésio/química , Marte , Compostos Orgânicos/química , Percloratos/química , Compostos Policíclicos/química , Rodaminas/química , Silicatos , Voo Espacial/instrumentação
7.
PLoS One ; 8(4): e58870, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593123

RESUMO

Peptide nucleic acids (PNAs) have gained much interest as molecular recognition tools in biology, medicine and chemistry. This is due to high hybridization efficiency to complimentary oligonucleotides and stability of the duplexes with RNA or DNA. We have synthesized 15/16-mer PNA probes to detect the HER2 mRNA. The performance of these probes to detect the HER2 target was evaluated by fluorescence imaging and fluorescence bead assays. The PNA probes have sufficiently discriminated between the wild type HER2 target and the mutant target with single base mismatches. Furthermore, the probes exhibited excellent linear concentration dependence between 0.4 to 400 fmol for the target gene. The results demonstrate potential application of PNAs as diagnostic probes with high specificity for quantitative measurements of amplifications or over-expressions of oncogenes.


Assuntos
Genes erbB-2 , Sondas Moleculares , Ácidos Nucleicos Peptídicos/química , Sequência de Bases , Primers do DNA , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Propriedades de Superfície
8.
Rapid Commun Mass Spectrom ; 26(23): 2786-90, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23124670

RESUMO

RATIONALE: A miniature time-of-flight mass spectrometer measuring 20 cm in length has been adapted to demonstrate two-step laser desorption/ionization (LDI) in a compact instrument package for enhanced organics detection. Two-step LDI decouples the desorption and ionization processes, relative to traditional LDI, in order to produce low-fragmentation mass spectra of organic analytes. Tuning the UV ionization laser energy would allow control of the degree of fragmentation, which might enable better identification of constituent species. METHODS: A reflectron time-of-flight mass spectrometer prototype was modified to allow a two-laser configuration, with IR (1064 nm) desorption followed by UV (266 nm) postionization. A relatively low ion extraction voltage of 5 kV was applied at the sample inlet. RESULTS: The instrument capabilities and performance were demonstrated with analysis of a model polycyclic aromatic hydrocarbon, representing a class of compounds important to the fields of Earth and planetary science. Two-step laser mass spectrometry (L2MS) analysis of a model PAH, pyrene, was demonstrated, including molecular ion identification and the onset of tunable fragmentation as a function of ionizing laser energy. Mass resolution m/Δm = 380 at full width at half-maximum was achieved for gas-phase postionization of desorbed neutrals in this highly compact mass analyzer. CONCLUSIONS: Achieving L2MS in a highly miniaturized instrument enables a powerful approach to the detection and characterization of aromatic organics in remote terrestrial and planetary applications. Tunable detection of molecular and fragment ions with high mass resolution, diagnostic of molecular structure, is possible on such a compact L2MS instrument. The selectivity of L2MS against low-mass inorganic salt interferences is a key advantage when working with unprocessed, natural samples, and a mechanism for the observed selectivity is proposed.


Assuntos
Espectrometria de Massas/instrumentação , Pirenos/química , Desenho de Equipamento , Lasers , Voo Espacial/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...