Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(5): 1602-1611, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38592927

RESUMO

Antibiotic resistance is an alarming public health concern that affects millions of individuals across the globe each year. A major challenge in the development of effective antibiotics lies in their limited ability to permeate cells, noting that numerous susceptible antibiotic targets reside within the bacterial cytosol. Consequently, improving the cellular permeability is often a key consideration during antibiotic development, underscoring the need for reliable methods to assess the permeability of molecules across cellular membranes. Currently, methods used to measure permeability often fail to discriminate between the arrival within the cytoplasm and the overall association of molecules with the cell. Additionally, these techniques typically possess throughput limitations. In this work, we describe a luciferase-based assay designed for assessing the permeability of molecules in the cytosolic compartment of Gram-negative bacteria. Our findings demonstrate a robust system that can elucidate the kinetics of intracellular antibiotic accumulation in live bacterial cells in real time.


Assuntos
Antibacterianos , Citosol , Escherichia coli , Medições Luminescentes , Antibacterianos/farmacologia , Escherichia coli/metabolismo , Escherichia coli/genética , Citosol/metabolismo , Citosol/química , Testes de Sensibilidade Microbiana , Permeabilidade da Membrana Celular
2.
Biophys Rep (N Y) ; 4(1): 100141, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38189030

RESUMO

Mechanosensitive (MS) channels act to protect the cytoplasmic membrane (CM) of living cells from environmental changes in osmolarity. In this report, we demonstrate the use of time-resolved second-harmonic light scattering (SHS) as a means of experimentally observing the relative state (open versus closed) of MS channels in living bacteria suspended in different buffer solutions. Specifically, the state of the MS channels was selectively controlled by changing the composition of the suspension medium, inducing either a transient or persistent osmotic shock. SHS was then used to monitor transport of the SHG-active cation, malachite green, across the bacterial CM. When MS channels were forced open, malachite green cations were able to cross the CM at a rate at least two orders of magnitude faster compared with when the MS channels were closed. These observations were corroborated using both numerical model simulations and complementary fluorescence experiments, in which the propensity for the CM impermeant cation, propidium, to stain cells was shown to be contingent upon the relative state of the MS channels (i.e., cells with open MS channels fluoresced red, cells with closed MS channels did not). Application of time-resolved SHS to experimentally distinguish MS channels opened via osmotic shock versus chemical activation, as well as a general comparison with the patch-clamp method is discussed.

3.
J Biol Chem ; 296: 100070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33187980

RESUMO

Lipids in complex, protein-enriched films at air/liquid interfaces reduce surface tension. In the absence of this benefit, the light refracting and immunoprotective tear film on eyes would collapse. Premature collapse, coupled with chronic inflammation compromising visual acuity, is a hallmark of dry eye disease affecting 7 to 10% of individuals worldwide. Although collapse seems independent of mutation (unlike newborn lung alveoli), selective proteome and possible lipidome changes have been noted. These include elevated tissue transglutaminase and consequent inactivation through C-terminal cross-linking of the tear mitogen lacritin, leading to significant loss of lacritin monomer. Lacritin monomer restores homeostasis via autophagy and mitochondrial fusion and promotes basal tearing. Here, we discover that lacritin monomer C-terminal processing, inclusive of cysteine, serine, and metalloproteinase activity, generates cationic amphipathic α-helical proteoforms. Such proteoforms (using synthetic peptide surrogates) act like alveolar surfactant proteins to rapidly bind and stabilize the tear lipid layer. Immunodepletion of C- but not N-terminal proteoforms nor intact lacritin, from normal human tears promotes loss of stability akin to human dry eye tears. Stability of these and dry eye tears is rescuable with C- but not N-terminal proteoforms. Repeated topical application in rabbits reveals a proteoform turnover time of 7 to 33 h with gradual loss from human tear lipid that retains bioactivity without further processing. Thus, the processed C-terminus of lacritin that is deficient or absent in dry eye tears appears to play a key role in preventing tear film collapse and as a natural slow release mechanism that restores epithelial homeostasis.


Assuntos
Síndromes do Olho Seco/fisiopatologia , Proteínas do Olho/metabolismo , Glicoproteínas/fisiologia , Isoformas de Proteínas/fisiologia , Lágrimas/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Glândulas Tarsais/fisiologia , Coelhos
4.
ACS Med Chem Lett ; 9(6): 569-574, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29937984

RESUMO

We present a nonlinear light scattering method for monitoring, with real-time resolution and membrane specificity, changes in molecular adsorption, and transport at bacterial membranes induced by an antimicrobial compound. Specifically, time-resolved second-harmonic light scattering (SHS) is used to quantify azithromycin-induced changes to bacterial membrane permeability in colloidal suspensions of living Escherichia coli. Variations in membrane properties are monitored through changes in the adsorption and transport rates of malachite green, a hydrophobic cation that gives SHS signal. Regardless of concentration, instantaneous treatment with azithromycin showed no significant changes in membrane permeability. However, 1 h pretreatment with subminimum inhibitory concentrations of azithromycin induced an order-of-magnitude enhancement in the permeability of both the outer membrane and, through facilitation of a new transport mechanism, the cytoplasmic membrane of the bacteria as well. This study illustrates SHS as a novel tool for monitoring antimicrobial-induced changes to membrane properties in living bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...