Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 133188, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880456

RESUMO

Morphine addiction poses a significant challenge to global healthcare. Current opioid substitution therapies, such as buprenorphine, naloxone and methadone are effective but often lead to dependence. Thus, exploring alternative treatments for opioid addiction is crucial. We have developed a novel vaccine that presents morphine and Pam3Cys (a TLR-2 agonist) on the surface of Acr1 nanoparticles. This vaccine has self-adjuvant properties and targets TLR-2 receptors on antigen-presenting cells, particularly dendritic cells. Our vaccination strategy promotes the proliferation and differentiation of morphine-specific B-cells and Acr1-reactive CD4 T-cells. Additionally, the vaccine elicited the production of high-affinity anti-morphine antibodies, effectively eliminating morphine from the bloodstream and brain in mice. It also reduced the expression of addiction-associated µ-opioid receptor and dopamine genes. The significant increase in memory CD4 T-cells and B-cells indicates the vaccine's ability to induce long-lasting immunity against morphine. This vaccine holds promise as a prophylactic measure against morphine addiction.

2.
Biomater Adv ; 159: 213822, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442461

RESUMO

Certain aggressive cancers, such as triple-negative breast cancer (TNBC), heavily bank on glutamine for their proliferation and survival. In this context, TNBC functions as a "glutamine trap," extracting circulating glutamine at a rate surpassing that of any other organ. Moreover, the overexpression of Alanine, Serine, Cysteine Transporter 2 (ASCT2), a key player in glutamine uptake, further underscores the significance of targeted therapy to enhance TNBC treatment. This led to the exploration of a novel approach involving hydrophobized Pluronic-based mixed micelles achieved through the use of docosahexaenoic acid and stapled with glutamine for displaying inherent ASCT2 targeting ability-a formulation termed LPT G-MM. LPT G-MM exhibited optimal characteristics, including a size of 163.66 ± 10.34 nm, a polydispersity index of 0.237 ± 0.083, and an enhanced drug loading capacity of approximately 15 %. Transmission electron microscopy validated the spherical shape of these micelles. In vitro release studies demonstrated drug release in a sustained manner without the risk of hemolysis. Importantly, LPT G-MM displayed heightened cellular uptake, increased cytotoxicity, a lower IC50 value, elevated reactive oxygen species, induced mitochondrial membrane depolarization, and a greater apoptosis index in TNBC cell lines compared to free LPT. The pharmacokinetic profile of LPT G-MM revealed a substantial rise in half-life (t1/2) by approximately 1.48-fold and an elevation in the area under the curve [AUC(0→∞)] by approximately 1.19-fold. Moreover, there was a significant reduction in the percentage of tumor volume by approximately 7.26-fold, along with decreased serum toxicity markers compared to free LPT. In summary, LPT G-MM demonstrated promising potential in boosting payload capacities and targeting specificity in the context of TNBC treatment.


Assuntos
Micelas , Neoplasias de Mama Triplo Negativas , Humanos , Lapatinib/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Glutamina/uso terapêutico , Linhagem Celular Tumoral , Apoptose
3.
Drug Deliv Transl Res ; 14(2): 510-523, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37605040

RESUMO

Breast cancer is challenging to treat accompanied with poor clinical outcomes. Paclitaxel (PTX) is a first-line chemotherapeutic agent, but possesses limitations due to side effects, high dose, non-specific tissue distribution, and drug resistance. An epigenetic modulator, vorinostat (VOR) is known to enhance PTX efficacy and therefore to resolve the issues of conventional PTX formulations, we designed PTX- and VOR-bound albumin nanoparticles (PTX-VOR-BSA-NPs) using antisolvent precipitation technique where albumin is used as a carrier and a targeting agent. The PTX-VOR-BSA-NPs were of 140 nm size, polydispersity index around 0.18, and about 78% and 68% of entrapment efficiency for PTX and VOR, respectively. A bi-pattern release of both PTX and VOR was observed from PTX-VOR-BSA-NPs with a burst release for 2 h succeeded by sustained release until 24 h. A significantly lower %cell viability was observed in MCF-7 cell lines, while efficient cellular drug uptake was found in MDA-MB-231 cells. Furthermore, a greater apoptotic index was found compared to free PTX and VOR because of the synergistic activity of these drugs. The PTX-VOR-BSA-NPs also showcased superior pharmacokinetic profile and noteworthy reduction in the tumor volume compared to Intaxel in 4T1 cell line-induced breast tumor model. Further, the NPs showed similar levels of toxicity biomarkers as that of control. Overall, the developed PTX-VOR-BSA-NPs were found to have less toxicity and more effectiveness compared to the marketed formulation, thus affirming the generation of a potent as well as and safe product.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Paclitaxel/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Vorinostat , Albuminas , Células MCF-7 , Linhagem Celular Tumoral
4.
Int J Pharm ; 648: 123570, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37918494

RESUMO

Triple negative breast cancer (TNBC) cells resist chemotherapy by hijacking apoptosis. Alternative cell death forms like ferroptosis offer new treatment options. A combined therapy using neratinib (NTB; ferroptosis inducer) and silibinin (SLB; apoptosis inducer) via albumin-based nanocarriers (N-S Alb NPs) was explored to target TNBC. N-S Alb NPs had optimal size (134.26 ± 10.23 nm), PDI (0.224 ± 0.01), and % entrapment efficiency (∼80 % for NTB and ∼87 % for SLB). Transmission electron microscopy confirmed their spherical shape. In vitro release studies showed sustained drug release without hemolysis risk. N-S Alb NPs had higher cellular uptake and cytotoxicity than individual drugs or their mixture. IC50 values for N-S Alb NPs were significantly reduced in MDA-MB-231 (∼2.23-fold) and 4T1 (∼1.85-fold) cell lines and apoptosis index were significantly higher in MDA-MB-231 (∼1.31-fold) and 4T1 cell line (∼1.35-fold) than the physical mixture of both drugs (NTB + SLB). N-S Alb NPs generated more reactive oxygen species (ROS) and caused mitochondrial membrane depolarization, indicating increased cell death. They also exhibited better ferroptosis induction by reducing glutathione (GSH), increasing Fe2+ activity and MDA levels in TNBC cells. Thus, N-S Alb NPs had the ability to promote "mixed" type cell death, showed promise in enhancing the payload capabilities and targeting in TNBC.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Silibina , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Apoptose , Albuminas
5.
Int J Biol Macromol ; 253(Pt 8): 127254, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37813219

RESUMO

Ferroptosis is a non-apoptotic cell death pathway characterized by the accumulation of lipid-peroxy radicals within the affected cells. Here, we investigate the synergistic capacity of sorafenib (SOR) and simvastatin (SIM) to trigger ferroptosis for cancer therapy. For precise in-vivo delivery, SOR + SIM was ratiometrically loaded in bovine serum albumin nanoparticles (BSA-NPs) modified with 4-carboxy phenylboronic acid (CPBA). The developed CPBA-BSA(SOR + SIM)-NPs revealed size of 175.2 ± 12.8 nm, with PDI of 0.22 ± 0.03 and Z-potential of -29.6 ± 4.8 mV. Significantly, CPBA-BSA(SOR + SIM)-NPs exhibited > 2 and > 5-fold reduction in IC50 values compared to individual SOR and SIM treatments respectively, in all tested cell lines. Moreover, CPBA-BSA(SOR + SIM)-NPs treated cells exhibited decrease in glutathione levels, increase in malonaldehyde levels and depolarization of mitochondrial membrane potential (JC-1 assay). Pharmacokinetic analysis revealed enhanced AUC0-∞ and MRT levels for SOR and SIM when administered as CPBA-BSA(SOR + SIM)-NPs compared to free drugs. Crucially, in in-vivo experiments, CPBA-BSA(SOR + SIM)-NPs led to a significant reduction in tumor volume compared to various control groups. Histological and biomarker analyses underscore their biocompatibility for clinical applications. In conclusion, this study highlights the potential of CPBA-BSA(SOR + SIM)-NPs as a promising strategy for inducing ferroptosis in cancer cells, concurrently improving drug delivery and therapeutic efficacy. This approach opens new avenues in cancer treatment.


Assuntos
Ferroptose , Nanopartículas , Sorafenibe/farmacologia , Soroalbumina Bovina , Sinvastatina/farmacologia , Portadores de Fármacos/farmacocinética , Tamanho da Partícula
6.
AAPS PharmSciTech ; 24(7): 180, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697085

RESUMO

Ferroptosis, a pathway dependent on oxygen and iron catalysts, holds promise as a therapeutic approach for cancer treatment due to its manageable regulation, direct control, and immunogenic properties. The sensitivity of cancer cells to ferroptosis induction varies based on their metabolic, genetic, and signalling pathways, prompting the use of combination therapy. In this study, we conducted a screening of drug combinations, including sorafenib (SOR) with simvastatin (SIM), phenethyl isothiocyanate, and trigonelline, in MDA-MB-231, A549, and HeLa cells to assess their cytotoxicity. The SOR-SIM combination exhibited a synergistic effect in MDA-MB-231, A549, and HeLa cells, with calculated CI values of ~ 0.66, 0.53, and 0.59, respectively. Furthermore, co-treatment with ferrostatin-1 resulted in a concentration-dependent increase in the IC50 values. Additionally, SOR + SIM demonstrated a significant reduction in GSH levels, an increase in MDA levels, and mitochondrial membrane depolarization across all three cell lines, indicating their ferroptosis inducing potential. In-vivo studies showed a significant reduction in tumor volume by 3.53-, 2.55-, and 1.47-fold compared to control, SIM, and SOR, respectively. Toxicity assessments revealed insignificant changes in biomarker levels and no observable deformations in isolated organs, except for erythrocyte shrinkage and membrane scrambling effects caused by the SOR + SIM combination. Overall, our findings highlight the potential of the SOR + SIM combination as an effective strategy for cancer treatment, emphasizing the importance of further research in targeted drug delivery systems to ensure its safety.


Assuntos
Ferroptose , Neoplasias , Humanos , Detecção Precoce de Câncer , Células HeLa , Sorafenibe/farmacologia , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico
7.
Int J Biol Macromol ; 252: 126565, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37640185

RESUMO

This study investigates the impact of charge and chain length of bile salts in the bilosomes on the oral bioavailability of insulin (IN) by examining their uptake via the apical sodium-dependent bile acid transporter (ASBT). Deoxycholic acid bile salt was conjugated with different amino acids to create conjugates with varying charge and chain length, which were then embedded in liposomes. The resulting bilosomes had a particle size <400 nm, a PDI of 0.121 ± 0.03, and an entrapment efficiency of ∼70 %, while maintaining the chemical and conformational integrity of the loaded IN. Bilosomes also provided superior protection in biological fluids without compromising their biophysical attributes. Quantitative studies using the Caco-2 cell line demonstrated that anionic bilosomes were taken up more efficiently through ASBT than cationic bilosomes with 4- and 1.3-fold increase, respectively. Ex-vivo permeability studies corroborated these findings. In-vivo efficacy studies revealed a 1.6-fold increase in the AUC of IN with bilosomes compared to subcutaneous IN. The developed bilosomes were able to reduce blood glucose levels by ∼65 % at 6 h, with a cumulative hypoglycemic value of 35 % and a BAR of ∼30 %. These results suggest that ASBT can be a suitable target for improving the oral bioavailability of bilosomes containing IN.


Assuntos
Insulina , Lipossomos , Humanos , Disponibilidade Biológica , Células CACO-2 , Lipossomos/química , Ácidos e Sais Biliares
8.
Drug Deliv Transl Res ; 13(4): 1074-1087, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36528709

RESUMO

In present investigation, we developed paclitaxel (PTX)-loaded adenosine (ADN)-conjugated PLGA nanoparticles for combating triple-negative breast cancer (TNBC), where ADN acts as a substrate for adenosine receptors (AR) that are overexpressed in TNBC. Using synthesized PLGA-PEG-ADN, PTX-loaded nanoparticles (PTX ADN-PEG-PLGA NPs) were prepared via emulsion diffusion evaporation process that rendered particles of size 135 ± 12 nm, PDI of 0.119 ± 0.03, and entrapment-efficiency of 79.26 ± 2.52%. The NPs showed higher %cumulative release at pH 5.5 over 7.4 with Higuchi release kinetics. The PTX ADN-PEG-PLGA NPs showed ~ 4.87- and 5.22-fold decrease in %hemolysis in comparison to free PTX and Intaxel®, indicating their hemocompatible nature. The ADN modification assisted cytoplasmic internalization of particles via AR-mediated endocytosis that resulted in ~ 3.77- and 3.51-fold reduction in IC50 and showed apoptosis index of 0.93 and 1.18 in MDA-MB-231 and 4T1 cells respectively. The pharmacokinetic profile of ADN-PEG-PLGA NPs revealed higher AUC and t1/2 than Intaxel® and Nanoxel® pharmacodynamic activity showed ~ 18.90-fold lower %tumor burden than control. The kidney and liver function biomarkers showed insignificant change in the levels, when treated with PTX ADN-PEG-PLGA NPs and exhibited no histological alterations in the liver, spleen, and kidney. Overall, the optimized particles were found to be biocompatible with improved anti-TNBC activity.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Paclitaxel/farmacocinética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Adenosina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Linhagem Celular Tumoral , Polietilenoglicóis , Portadores de Fármacos/farmacologia
9.
Drug Deliv Transl Res ; 13(3): 839-851, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36223029

RESUMO

Sildenafil (SLD) is employed for the management of erectile dysfunction and pulmonary arterial hypertension. It exhibits meagre water solubility and is available in the form of citrate salt hydrate to improve the solubility. However, it still exhibits moderate solubility, high first-pass metabolism, resulting in very less oral bioavailability. The present study demonstrates the preparation of self-nanoemulsifying drug delivery system for augmenting the oral bioavailability of SLD. Oleic acid and Capmul MCM C8 blend (oil phase), Cremophor® RH40 (surfactant), and Labrafil® M1944 CS (cosurfactant) were selected as main constituents for making liquid preconcentrate based on the solubility and emulsification study. The preconcentrate upon dilution and emulsification showed droplet size 52.03 ± 13.03 nm, PDI 0.143 ± 0.028, and % transmittance was 99.77 ± 1.86% with SLD load of 40 mg/g of formulation. The prepared formulation was further assessed for stability, in vitro release, Caco-2 cell uptake, and in vivo pharmacokinetic performance. SLD-SNEDDS formulation was found to be robust in terms of stability against several folds dilution in the gastrointestinal tract (GIT), freeze-thaw cycles, and had a storage stability of 3 months at 4 °C and 25 °C. SLD-SNEDDS showed ~4.7-fold and ~5-fold increase in time- and concentration-dependent cellular uptake as against SLD cultured with Caco-2 cells. In vivo pharmacokinetic study revealed ~5.8- and ~2.5-fold increase in AUC0-∞ values in case of SLD-SNEDDS as against SLD suspension and SLD citrate solution, respectively.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Ratos , Masculino , Humanos , Animais , Citrato de Sildenafila , Ratos Wistar , Células CACO-2 , Emulsões , Sistemas de Liberação de Medicamentos/métodos , Tensoativos , Solubilidade , Disponibilidade Biológica , Citratos , Administração Oral , Tamanho da Partícula
10.
AAPS PharmSciTech ; 23(7): 238, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002600

RESUMO

The current study elucidates the improved drug loading of paclitaxel (PTX) in lipid- and D-α-tocopheryl polyethylene glycol succinate (TPGS)-based core-shell-type lipid nanocapsules (PTX-TPGS-LNC) for augmenting the therapeutic efficacy and curbing the toxicity. PTX-TPGS-LNCs were formulated by employing anti-solvent precipitation technique and displayed a particle size of 162.1 ± 4.70 nm and % practical drug loading of 15.04 ± 2.44%. Electron microscopy revealed that PTX-TPGS-LNCs have spherical morphology and the inner core was surrounded by a relatively lighter region, i.e., layer of lipids and TPGS. The nature of loaded PTX inside the PTX-TPGS-LNC was also confirmed using DSC and PXRD analysis. The in vitro release study showed biphasic and sustained release pattern of PTX from PTX-TPGS-LNC and it showed ~ threefold higher PTX uptake in MCF-7 cell line in comparison to free PTX. Moreover, it was apparent from the cytotoxicity assay that PTX-TPGS-LNC displayed higher cytotoxicity in MCF-7 cells and revealed ~ 2.92-fold decrease in IC50 value as against free PTX when incubated for 72 h. The apoptotic index in case of PTX-TPGS-LNC was ~ twofold higher than free PTX. The pharmacokinetic profile of PTX-TPGS-LNC revealed a ~ 3.18-fold increase in t1/2 and a ~ 2.62-fold higher AUC(0→∞) compared to Intaxel®. Finally, treatment with PTX-TPGS-LNC demonstrated significant lowering in the % tumor burden and serum toxicity markers compared to marketed formulation Intaxel®. Thus, the lipid- and TPGS-based core-shell-type LNC with high PTX loading can advance the existing standards of therapy for overshadowing cancer.


Assuntos
Nanocápsulas , Paclitaxel , Linhagem Celular Tumoral , Humanos , Lipídeos , Polietilenoglicóis , Vitamina E , alfa-Tocoferol
11.
ACS Biomater Sci Eng ; 8(8): 3473-3484, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35896042

RESUMO

Triple-negative breast cancer (TNBC) belongs to the category of the most destructive forms of breast cancer. Being a highly potent chemotherapeutic agent, paclitaxel (PTX) is extensively utilized in the management of various cancers. Commercially available PTX formulations contain non-targeted drug carriers that result in low antitumor activity because of non-specific tissue distribution. Thus, to resolve this issue, we designed PTX-loaded pH-sensitive liposomes (pH Lipos) in the present investigation and used adenosine (ADN) as a targeting ligand. Further, d-α-tocopheryl polyethylene glycol succinate (TPGS) was incorporated into the liposomes to impart a stealth effect to the system. For the development of these pH Lipos, different conjugates were synthesized (ADN-CHEMS and TPGS-ADN) and further utilized for the preparation of ADN-PEG-pH Lipo and ADN-pH Lipo by a thin-film hydration method. DOPE:HSPC:CHEMS:cholesterol at a molar ratio of 3:3:2:2 was selected for the preparation of pH-Lipo possessing 7.5% w/w drug loading. They showed a particle size below 140 nm, a PDI below 0.205, and a % EE greater than 60%. All of the pH Lipos displayed a biphasic pattern of PTX release at pH 7.4 and 5.5. However, the percent drug release at pH 5.5 was substantially greater because of the pH-sensitive nature of the liposomes. The MDA MB 231 and 4T1 cell lines depicted improvement in the qualitative as well as quantitative cellular uptake of PTX ADN-PEG-pH Lipo with a substantial decrease in the IC50 value. Moreover, a higher apoptotic index was observed with pH Lipo compared to free PTX. PTX ADN-PEG-pH Lipo revealed a 3.98- and 3.41-fold rise in the AUC and t1/2 values of PTX compared to Intaxel, respectively. Overall, characteristic decreases in tumor volume and serum toxicity marker levels were observed, which confirmed the development of an efficient and safe formulation.


Assuntos
Paclitaxel , Neoplasias de Mama Triplo Negativas , Adenosina/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Lipossomos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
12.
ACS Biomater Sci Eng ; 8(6): 2349-2362, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35522530

RESUMO

Triple-negative breast cancer (TNBC) cells show improved sensitivity for cisplatin therapy due to their defective DNA damage repair system. However, the clinical utilization of cisplatin is limited by dose-dependent systemic toxicities and chemoresistance. Cisplatin Pt(IV) derivatives having kinetically inert octahedral geometry provide an effective strategy to overcome these limitations. Upon cellular reduction, these derivatives release cisplatin and axial ligands, acting as dual-action prodrugs. Hereby, we have developed three cisplatin(IV) conjugates using distinct bioactive axial moieties (valproate, tocopherol, and chlorambucil), which can synergistically complement cisplatin activity and attack multiple cellular targets. The designed derivatives showcased enhanced antiproliferative activity and improved therapeutic synergism along with a noteworthy cisplatin dose reduction index in a panel of six cancer cells. These Pt(IV) derivatives remarkably improved cellular drug uptake and showed lower dependency on copper transporter 1 (Ctr1) for uptake than cisplatin. The results of enhanced in vitro activity were well corroborated by in vivo efficacy testing in the 4T1 cell-based TNBC model, showcasing ∼2-7-folds higher tumor volume reduction for Pt(IV) derivatives than cisplatin. In addition, the designed derivatives significantly reduced the nephrotoxicity risk involved in cisplatin therapy, indicated by systemic toxicity biomarkers and organ histopathology. The results indicated that cisplatin(IV) derivatives could open new avenues for safer synergistic chemotherapy in TNBC.


Assuntos
Antineoplásicos , Pró-Fármacos , Neoplasias de Mama Triplo Negativas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Humanos , Pró-Fármacos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
13.
Mol Pharm ; 19(5): 1325-1337, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35437994

RESUMO

Cisplatin is a platinum (Pt)-based anticancer drug with broad-scale clinical utility. However, due to its hydrophilic nature and high kinetic reactivity, it offers numerous drug delivery challenges. Limitations such as severe systemic toxicities, chemoresistance, extensive cisplatin-plasma protein interaction, and limited cellular drug uptake reduce the therapeutic impact of cisplatin therapy. Cisplatin(IV) prodrug formation can effectively resolve these challenges. The selection of axial ligands could play a key role in determining the fate of cisplatin(IV) prodrugs by modulating the therapeutic and biopharmaceutical outcomes of therapy. Hereby, three cisplatin(IV) derivatives were developed utilizing valproate, tocopherol, and chlorambucil as axial ligands, and their biopharmaceutical performance was compared along with cisplatin. The impact of cisplatin(IV) derivative formation on their kinetic stability, drug-albumin interaction, cytotoxicity profile, cellular uptake pattern, self-assembling behavior, hemotoxicity, and tumor biodistribution pattern was analyzed to establish the correlation between the structural properties of cisplatin(IV) agents and their biopharmaceutical outcomes. The kinetic inertness of the designed cisplatin(IV) compounds helped in minimizing their plasma protein interactions and ensuring their stability in the blood environment. The lipophilicity enhancement due to Pt(IV) prodrug formation critically helped in enhancing the cellular drug uptake and reduced the dependence on transporters for drug uptake. The lipophilicity and activity of axial ligands were the key drivers governing the biopharmaceutical performance of the Pt(IV) derivatives. The properties of the axial ligand, such as its therapeutic activity, chemical backbone, and functional groups present in its structure, were the critical factors determining their plasma protein interaction, cellular uptake, anticancer activity, and self-assembly pattern. Cisplatin(IV) derivative formation further improved the amount of platinum accumulated in tumors after intravenous injection compared to free cisplatin therapy (2.7-5.4 folds increment) and reduced drug-erythrocyte interactions. Overall, the results highlighted the potential of cisplatin(IV) agents in resolving cisplatin drug delivery challenges and denoted the critical role of axial ligand selection in Pt(IV) prodrug designing.


Assuntos
Antineoplásicos , Produtos Biológicos , Pró-Fármacos , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/química , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Ligantes , Platina/química , Pró-Fármacos/química , Distribuição Tecidual
14.
Colloids Surf B Biointerfaces ; 204: 111821, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33971612

RESUMO

Combination therapy, which combines anti-cancer drugs with different oligonucleotides, have shown potential in cancer treatment. However, delivering a hydrophobic anti-cancer drug and a hydrophilic oligonucleotide simultaneously is a herculean task. This study takes advantage of interactions between histidine-lauric acid-based green surfactant and poly(amidoamine) dendrimers to achieve this aim. The green surfactant was synthesized by carbodiimide chemistry and characterized by FTIR, 1H-NMR, and mass spectroscopy. Further, green surfactant-dendrimer aggregates encapsulating DTX and complexing SIRT 1 shRNA i.e., "aggreplexes" were developed and characterized. The term "aggreplexes" signifies complexes which are formed between green-surfactant-dendrimer aggregates and SIRT-1 shRNA via electrostatic interaction. The aggreplexes displayed particle size of 262.33 ± 3.87 nm, PDI of 0.25 and entrapment efficiency of 70.56 %. The TEM images revealed spherical shape of aggreplexes with irregular outer surface and corroborated particle size obtained from zetasizer. The in-vitro release study revealed biphasic release patterns of DTX from aggreplexes and were compatible for intravenous administration. Further, aggreplexes augmented cellular uptake in MDA-MB-231 cells by ∼1.87-fold compared to free DTX. Also, EGFP expression revealed significantly higher transfection of aggreplexes compared to naked shRNA and Superfect™ complexes. Further, aggreplexes showed higher cytotoxicity in MDA-MB-231 cells and ∼4.16-fold reduction in IC50 value compared to free DTX. Finally, apoptosis-index observed in case of aggreplexes was ∼3.57-fold higher than free DTX. These novel aggreplexes showed increased drug loading capacity and superior gene transfection potential. Thus, they open new avenues for co-delivery of hydrophobic anti-cancer drugs and hydrophilic therapeutic genes for improving current standards of cancer therapy.


Assuntos
Antineoplásicos , Dendrímeros , Nanopartículas , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Docetaxel , Portadores de Fármacos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Tamanho da Partícula , Tensoativos
15.
Mater Sci Eng C Mater Biol Appl ; 121: 111832, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579470

RESUMO

The present work exploits the tumor microenvironment which differs significantly from normal cellular environment in terms of both, having lower extracellular pH and increased angiogenesis capacity. To reduce systemic toxicity of docetaxel (DTX) and increase its therapeutic potential, VEGF antibody functionalized PEGylated pH sensitive liposomes (VEGF-PEG-pH-Lipo-DTX) were developed. The liposomes prepared by thin film hydration technique were later conjugated with VEGF antibody on liposomal surface by standard carbodiimide chemistry and using DSPE-PEG-COOH as linker. The VEGF-PEG-pH-Lipo-DTX displayed particle size of ~206 nm with an entrapment efficiency of ~62%. The transmission electron microscopy images revealed spherical shape of liposomes and corroborated the particle size obtained from zetasizer. The in vitro release study revealed biphasic release pattern of DTX from VEGF-PEG-pH-Lipo-DTX. The % drug released was also significantly higher at pH 5.5 which guarantees rapid endosomal escape and faster intracellular drug release. In case of VEGF-PEG-pH-Lipo-DTX the cellular uptake in MCF-7 cell line was augmented ~3.17-fold as compared to free DTX probably due to the VEGF-positive nature of MCF-7 cell (increased affinity for VEGF). Further, it was evident from the cytotoxicity assay that VEGF-PEG-pH-Lipo-DTX showed higher cytotoxicity in MCF-7 cells and ~5.78-fold reduction in IC50 value as compared to free DTX. The apoptotic index observed in case of VEGF-PEG-pH-Lipo-DTX was ~1.70-fold higher than free DTX. The VEGF-PEG-pH-Lipo-DTX inhibited the proliferation of HUVECs stimulated by VEGF, warranting its anti-angiogenic potential. Furthermore, pharmacokinetic profile of VEGF-PEG-pH-Lipo-DTX revealed a ~2.94-fold increase in t1/2 and a ~1.25-fold higher AUC (0→∞) as compared to marketed formulation Taxotere®. Similarly, mean residence time was also increased ~2.50-fold as compared to Taxotere®. Finally, treatment with VEGF-PEG-pH-Lipo-DTX demonstrated significant reduction in % tumor burden (~35%) as compared to Taxotere® (~75%). Thus, the combined approach of using PEGylated pH sensitive liposomes along with VEGF antibody functionalization for efficient targeting can improve current standards of DTX therapy for treatment of breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Docetaxel/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Lipossomos , Tamanho da Partícula , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/uso terapêutico
16.
J Control Release ; 330: 72-100, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321156

RESUMO

Triple negative breast cancer (TNBC) is one of the most aggressive form of breast cancer. It is characterized by the absence of estrogen, progesterone and human epidermal growth factor receptors. The main issue with TNBC is that it exhibits poor prognosis, high risk of relapse, short progression-free survival and low overall survival in patients. This is because the conventional therapy used for managing TNBC has issues pertaining to poor bioavailability, lower cellular uptake, increased off-target effects and development of resistance. To overcome such pitfalls, several other approaches are explored. In this context, the present manuscript showcases three of the most widely used approaches which are (i) nanotechnology-based approach; (ii) gene therapy approach and (iii) Phytochemical-based approach. The ultimate focus is to present and explain the insightful reports based on these approaches. Further, the review also expounds on the identified molecular targets and novel targeting ligands which are explored for managing TNBC effectively. Thus, in a nutshell, the review tries to highlight these existing treatment approaches which might inspire for future development of novel therapies with a potential of overshadowing TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/terapia
17.
ACS Biomater Sci Eng ; 6(12): 6760-6769, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33320604

RESUMO

The current investigation illustrates high drug loading of Paclitaxel (PTX) in lipid- and biosurfactant-based core-shell-type nanocapsules for improving therapeutic potential and reducing toxicity of PTX. The nanocapsules were prepared using the antisolvent precipitation technique having a particle size of 253.8 ± 15.4 nm and drug loading of ∼19%. The microscopic evaluation revealed the spherical shape of the nanocapsules and corroborated with the particle size obtained from Zetasizer. It also revealed the drug core enveloped by the relatively lighter shadowed region, that is, the layer of lipids and the biosurfactant. The in vitro release study showed biphasic and sustained release pattern of PTX from core-shell-type nanocapsules. In case of nanocapsules, the cellular uptake in the MCF-7 cell line was augmented ∼3.17-fold as compared to free PTX. Further, it was evident from the cytotoxicity assay that nanocapsules displayed greater cytotoxicity in MCF-7 cells and ∼2.98-fold decrease in the IC50 value as compared to free PTX. The apoptotic index observed in case of nanocapsules was ∼2.04-fold higher than that of free PTX. Furthermore, the pharmacokinetic profile of nanocapsules revealed a ∼7.21-fold increase in t1/2 and a ∼3.27-fold higher AUC(0→∞) compared to Intaxel. Finally, treatment with PTX core-shell-type nanocapsules demonstrated significant cutback in the % tumor burden and serum toxicity markers compared to marketed formulation. Thus, the current approach of core-shell-type nanocapsules with high drug loading can improve the current standards of PTX therapy for treatment of cancer.


Assuntos
Neoplasias da Mama , Nanocápsulas , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Lipídeos/uso terapêutico , Nanocápsulas/uso terapêutico , Paclitaxel/uso terapêutico
18.
Mol Pharm ; 17(7): 2473-2486, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32496783

RESUMO

The currently available systemic chemotherapy for treating breast cancer often results in serious systemic side effects and compromises patient compliance. The distinct anatomical features of human breasts (e.g., embryological origin of breast skin, highly developed internal lymphatic and venous circulation, and the presence of mammary fat layers) help in preferential accumulation of drugs into breasts after topical application on breast region. This unique feature is termed as localized transdermal delivery which could be utilized for effectively delivering anticancer agents to treat breast cancer and reducing the systemic side effects by limiting their presence in blood. However, the clinical effectiveness of this drug delivery approach is highly limited by barrier properties of skin reducing the permeation of anticancer drugs. In the present work, we have developed high permeation vesicles (HPVs) using phospholipids and synergistic combination of permeation enhancers (SCOPE) to improve the skin permeation of drugs. Docetaxel (DTX) was used as a model drug for hypothesis testing. The optimized SCOPE mixture composed of sodium oleate/sodium lauryl ether sulfate/propylene glycol in 64:16:20% w/w ratio. DTX HPVs were prepared using phospholipid: SCOPE, 8:2% w/w ratio. DTX HPVs exhibited as a uniform deformable vesicles with size range 124.2 ± 7.6 nm, significantly improved skin permeation profile, and sustained drug release until 48 h. Superior vesicle deformability, better vesicle membrane fluidization, and SCOPE mediated enhancement in skin fluidization were the prime factors behind enhancement of DTX permeation. The improved cellular uptake, reduced IC50 values, and higher apoptotic index of DTX HPVs in MCF-7 and MDA-MB-231 cells ensured the therapeutic effectiveness of HPV based therapy. Also, HPVs were found to be predominantly internalized inside cells through clathrin and caveolae-dependent endocytic pathways. Bioimaging analysis in mice confirmed the tumor penetration potential and effective accumulation of HPVs inside tumors after topical application. In vivo studies were carried out in comparison with marketed intravenous DTX injection (Taxotere) to compare the effectiveness of topical chemotherapy. The topical application of DTX HPV gel in tumor bearing mice resulted in nearly 4-fold tumor volume reduction which was equivalent to intravenous Taxotere therapy. Toxicity analysis of DTX HPV gel in comparison with intravenous Taxotere dosing showcased remarkably lower levels of toxicity biomarkers (aspartate transaminase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), and creatinine), indicating improved safety of topical chemotherapy. Overall results warranted the effectiveness of topical DTX chemotherapy to reduce tumor burden with substantially reduced risk of systemic toxicities in breast cancer.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Docetaxel/administração & dosagem , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Nanopartículas/química , Administração Cutânea , Animais , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Docetaxel/sangue , Docetaxel/farmacocinética , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Pele/metabolismo , Suínos , Distribuição Tecidual , Transplante Homólogo , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos
19.
Int J Pharm ; 578: 119088, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001291

RESUMO

Docetaxel (DTX), a widely prescribed anticancer agent, is now associated with increased instances of multidrug resistance. Also, being a problematic BCS class IV drug, it poses challenges for the formulators. Henceforth, it was envisioned to synthesize an analogue of DTX with a biocompatible lipid, i.e., palmitic acid. The in-silico studies (molecular docking and simulation) inferred lesser binding of docetaxel palmitate (DTX-PL) with P-gp vis-à-vis DTX and paclitaxel, indicating it to be a poor substrate for P-gp efflux. Solid lipid nanoparticles (SLNs) of the conjugate were prepared using various lipids, viz. palmitic acid, stearic acid, cetyl palmitate and glyceryl monostearate. The characterization studies for the nanocarrier were performed for the surface charge, drug payload, micromeritics, release pattern of drug and surface morphology. From the cytotoxicity assays on resistant MCF-7 cells, it was established that the new analogue offered substantially decreased IC50 to that of DTX. Further, apoptosis assay also corroborated the results obtained in IC50 determination wherein, SA-SLNs showed the highest apoptotic index than free DTX. The conjugate not only enhanced the solubility but also offered lower plasma protein binding and improved pharmacokinetic and pharmacodynamic effect for DTX loaded SA-SLNs in apt animal models, and lower affinity to P-gp efflux. The studies provide preliminary evidence and a ray of hope for a better candidate in its nano version for safer and effective cancer chemotherapy.


Assuntos
Antineoplásicos/administração & dosagem , Docetaxel/administração & dosagem , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Lipídeos/administração & dosagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Nanopartículas/administração & dosagem , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Docetaxel/química , Docetaxel/farmacocinética , Liberação Controlada de Fármacos , Eritrócitos/efeitos dos fármacos , Feminino , Humanos , Lipídeos/química , Lipídeos/farmacocinética , Células MCF-7 , Masculino , Camundongos Endogâmicos BALB C , Nanopartículas/química , Ratos Wistar , Albumina Sérica Humana/química
20.
Int J Pharm ; 560: 219-227, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30776407

RESUMO

The present investigation highlights the development of D-α-Tocopheryl polyethylene glycol 1000 succinate (Tocophersolan; TPGS) stabilized lipid nanocapsules for enhancing the oral bioavailability and permeability of curcumin (CUR). Lipid nanocapsules were optimized for different lipids, different concentrations of TPGS and different drug: lipid ratio and were further lyophilized. Subsequently, they were characterized by powder X-ray diffraction, Transmission electron microscopy and also evaluated for in vitro release study, Caco-2 cell uptake study, ex vivo intestinal permeability and in vivo pharmacokinetic performance. Optimized lipid nanocapsules exhibited desirable quality attributes (average particle size of 190 nm, polydispersity index of 0.240 and average % entrapment efficiency of 51.06 ±â€¯7.27) employing Maisine™ 35-1 as a lipid carrier, 0.05% TPGS and CUR: lipid ratio of 5:10 and showed sustained release biphasic pattern. They showcased excellent stability in simulated gastrointestinal fluids and storage stability. The CUR nanocapsules exhibited ∼14-fold higher Caco-2 cell uptake and ∼12.8-fold increased ex vivo intestinal permeability. Also, the AUC of CUR nanocapsules in Sprague Dawley rats was increased by ∼12 folds and MRT ∼2.47-folds as compared to aqueous CUR suspension. Thus, lipid nanocapsules possessed a positive impact on improving the permeability and oral bioavailability of CUR.


Assuntos
Curcumina/administração & dosagem , Excipientes/química , Lipídeos/química , Vitamina E/química , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Área Sob a Curva , Disponibilidade Biológica , Células CACO-2 , Química Farmacêutica/métodos , Curcumina/farmacocinética , Portadores de Fármacos/química , Humanos , Absorção Intestinal , Masculino , Nanocápsulas , Tamanho da Partícula , Permeabilidade , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...