Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Talanta ; 272: 125705, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364554

RESUMO

To determine metronidazole in water samples, we developed an environmentally friendly, efficient, and straightforward ferrofluid-based liquid-liquid microextraction sample pretreatment technique. It is coupled with a high-performance liquid chromatography-ultraviolet analytical technique known for its sensitivity, speed, and precision. The magnetic separation of metronidazole-containing ferrofluid from the matrix was effortlessly achieved through the application of an external magnetic field, eliminating the need for centrifugation. Response surface optimization was employed to systematically determine the key experimental parameters influencing extraction efficiency, including pH, NaCl concentration, ferrofluid volume, and vortex duration. With a low detection limit (0.116 ng mL-1), a broad linear range between 0.5 and 700 ng mL-1 was achieved at optimal conditions. Additionally, acceptable spiking recoveries (94.3-97.3 %) and RSD values (≤3.7 %) for intra- and inter-day precision were attained in water samples. In conclusion, the effectiveness of the vortex and ferrofluid combination, along with the convenience of collection and elimination of the need for centrifugation, bestows a highly valuable technique for determining metronidazole in water samples.

2.
Int J Biol Macromol ; 249: 126065, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37524273

RESUMO

Herein, we designed an on-site and portable colorimetric assay using cellulose acetate polymeric films incorporated with HKUST-1 metal-organic framework while immersed in a solution of methyl red and brilliant cresyl blue organic dyes as an indicator for monitoring ammonia levels. Ammonia serves as a significant biomarker of food spoilage which falls under the category of volatile organic compounds (VOCs). The designed colorimetric solid-state sensor was comprehensively characterized using FE-SEM, EDS-mapping, XRD, FTIR, and contact angle analyses. The results confirmed the superior stability, water permeability, good crystallinity and desirable morphology of the prepared sensor platform. Additionally, customized smartphone was developed and applied for online signaling and colorimetric analysis. The findings demonstrated two linear ranges: 1-100 ppb and 0.1-1340 ppm with a detection limit of 0.02 ppm. The solid-state sensor exhibited high selectivity in the presence of other VOCs such as methanol, ethanol, acetone, 2-propanol, toluene, humidity, and hexane. It displayed acceptable repeatability in both inter-day (RSD = 3.38 %) and intraday (RSD = 3.86 %), long-term stability over 4 days as well as reusability over 3 cycles. We successfully applied this sensing platform for ammonia monitoring in spoiled meat foods including veal, fish and chicken. The results indicated favorable percentage recovery and repeatability, confirming the feasibility and potential applicability of this intelligent packaging system for monitoring freshness. The platform allows for real-time monitoring and data analysis via smartphone-based online signaling, providing a convenient and effective method for ensuring food quality.


Assuntos
Colorimetria , Produtos da Carne , Animais , Bovinos , Amônia , Produtos da Carne/análise , Carne/análise , Embalagem de Alimentos , Concentração de Íons de Hidrogênio
3.
J Environ Manage ; 345: 118656, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37480664

RESUMO

In the present study, the magnetic Fe3O4/Ag2C2O4/Ag3PO4/Ag nanocomposite were prepared through a simple co-precipitation method by using calendula officinalis seed extract as a stabilizer. The fabricated quaternary photocatalyst was applied for to degrade food dye Brilliant Blue FCF (BB) and herbicide Paraquat (PQ) as contaminants at binary mixture in a batch and continuous flow-loop photoreactor under visible light irradiation and also the antibacterial properties was investigated. The fabricated nanocomposite was determined by XRD, FESEM, EDX, BET&BJH, UV-DRS, FT-IR and VSM methods to gain insight about structure, morphology, purity, surface area, optical, functional group and magnetic properties. The photoelectrochemical experiments, PL and DRS indicate the successful coupling of the active semiconductors. The degradation efficiency of BB and PQ was announced to be 88.9% and 92.72% under optimal conditions with a high reaction rate constant value (0.03 and 0.0326 min-1), respectively. The quaternary photocatalyst exhibited superior photocatalytic performance compared with Ag3PO4/Ag2C2O4 and Ag2C2O4. Various scavengers were used to explore the mechanism of photocatalytic performance and supports that [Formula: see text] and OH. is main active species in the degradation process of BB and PQ, respectively. Furthermore, the Fe3O4/Ag2C2O4/Ag3PO4/Ag also demonstrated bactericidal activity against Staphylococcus aureus (S. aureus) as gram-positive bacteria and Escherichia coli (E. coli) as gram-negative bacteria.


Assuntos
Poluentes Ambientais , Herbicidas , Água , Desinfecção , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Luz
4.
Talanta ; 260: 124581, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121142

RESUMO

A quick, environmentally friendly and easy approach for the determination of cinnamic acid in juice samples based on the creation and usage of a novel magnetic nanofluid (mixture of hydrophobic deep eutectic solvent and magnetic nanoparticles) has been reported. Response surface methodology was applied to justify the contribution of the efficient factors including pH, nanofluid volume, ionic strength and vortex time. Cinnamic acid concentrations were monitored and quantified based on their HPLC peak representing linear correlations under the best operational circumstances showing linearity between 3 and 550 ng mL-1. The LOD, LOQ, and enrichment factor for cinnamic acid were 0.8 ng mL-1, 2.7 ng mL-1 and 57.2, respectively. The proposed method was used for enrichment and subsequent determination of cinnamic acid from juice samples which suggests a potential alternative approach for cinnamic acid analysis in complicated food samples.


Assuntos
Solventes Eutéticos Profundos , Microextração em Fase Líquida , Solventes/química , Cinamatos , Microextração em Fase Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Fenômenos Magnéticos , Limite de Detecção
5.
J Environ Manage ; 329: 117009, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535146

RESUMO

In this work, the magnetic layered double hydroxide composite as a new adsorbent was synthesized and applied for efficient copper (II) and nickel (II) ions removal from aqueous samples. After fabrication, the adsorbent was identified and characterized via Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Field-emission scanning electron microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy and vibrating sample magnetometer (VSM), while FE-SEM reveals and denote layered structure of present adsorbent. The magnetic strength of 20.34 emu g-1 supplies sufficient magnetic property which leads to a solution fast separation of the adsorbent from the sample solution by an external magnet. Then, central composite design (CCD) based on response surface methodology (RSM) was used to optimize the effects of various parameters on the removal process and accordingly best operational conditions was fixed at: 0.039 g of adsorbent, 6.31 min sonication, pH (8) and 17 mgl-1 of both copper (II) and nickel (II) ions concentrations, respectively. Moreover, the "Lack of Fit p-values" of analysis of variance were obtained to be 0.3758 and 0.8750 for nickel (II) and copper (II) ions, respectively which is not significant value denoting suitability of the current model. Amongst different isotherm and kinetic models, the current adsorption process followed the Freundlich and pseudo-second-order models, while the criterion for judgment is based on their higher correlation coefficients (more than 0.9) compared to other models. Kinetic judgment is based on the closeness of experimental and theoretical adsorption capacity and higher R2 values. The Freundlich model based on the multilayer process occurs owing to the adsorption of ions onto the heterogeneous surface of the adsorbent. The adsorbent showed the maximum adsorption capacities of 200.00 mg g-1 and 109.92 mg g-1 for Cu2+ and Ni2+ ions, respectively. Experimental results explore that the chemical and electrostatic interactions were responsible for the under-study model ions. The relative standard deviations assign to both metal ions adsorption was 1.63-3.78% representing the applicability of the composite for practical purposes.


Assuntos
Cobre , Poluentes Químicos da Água , Cobre/análise , Adsorção , Níquel/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Hidróxidos/química , Fenômenos Magnéticos , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio , Íons
6.
J Chromatogr A ; 1689: 463705, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36577206

RESUMO

In this work, magnetic nanofluid based on a deep eutectic solvent that constricts through a simple and easy route, and subsequently applied for the preconcentration and microextraction of chloramphenicol (CAP) as a hazardous drug from milk and chicken samples via syringe-to-syringe microextraction prior to its determination by high-performance liquid chromatography-ultraviolet (HPLC-UV). In addition, the optimum conditions of effective factors were searched by the central composite design (CCD), and subsequently, at their optimum value, the figures of merit were evaluated. Also, the suggested method illustrated a low limit of detection (0.2 ng mL-1), a low limit of quantitation (0.67 ng mL-1), and a good linear range with an R2 of 0.996. The CAP relative recoveries in milk and chicken samples were 90.3%-95.1%, with relative standard deviations lower than 4.2%. The current enhancement technique is simple, easy, and rapid, which makes it suitable for quantification of CAP by HPLC-UV at trace levels in complicated materials with reliable and reproducible results.


Assuntos
Galinhas , Microextração em Fase Líquida , Animais , Solventes , Cromatografia Líquida de Alta Pressão , Solventes Eutéticos Profundos , Leite , Fenômenos Magnéticos , Microextração em Fase Líquida/métodos , Limite de Detecção
7.
Crit Rev Anal Chem ; 53(3): 520-536, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34569383

RESUMO

Environmental pollution has arisen from releasing pollutants into water sources in many parts of the world, endangering human health and marine environments. Chemical discharge may come from various places, including wastewater treatment plants, agriculture, manufacturing, and stormwater overflows. As a result, monitoring pollution including, heavy metals, pesticides, toxic gases, and other contaminants in environmental samples such as water (e.g., groundwater, surface water, and drinking water), air, soil, and vegetables is critical to eliminating or reducing their risk and toxicity. Real-time analysis may also have an effect on reducing consumption of a variety of harsh chemicals and reagents, with the additional benefit of on-site contaminant composition assessment prior to discharge into the setting. Electrochemical biosensors have received a lot of interest in solving this issue as a result of recent technological breakthroughs. This review presents the types and properties of carbon-based nanomaterials and their applications in electrochemical biosensors for environmental toxicants over the past five years. We emphasize the sensing performances of electrochemical biosensors in terms of limit of detection, linear range, and their applicability in real samples. This review would be helpful in raising awareness and understanding of the role of electrochemical biosensors in sustaining the environment.


Assuntos
Técnicas Biossensoriais , Poluentes Ambientais , Nanoestruturas , Humanos , Monitoramento Ambiental , Água
8.
RSC Adv ; 12(45): 29503-29515, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36320776

RESUMO

Zr(CUR)/NiCo2S4/CuCo2S4 and Zr(CUR)/CuCo2S4/Ag2S ternary composites were synthesized as efficient photocatalysts, and well characterized through XRD, FTIR, DRS, FE-SEM, EDS, and EDS mapping techniques. The potential of a spiral-shaped photocatalytic reactor was evaluated for degradation of the methyl parathion (MP) pesticide using synthesized photocatalysts under visible light irradiation. Computational fluid dynamics (CFD) was applied for analysis of the hydrodynamics behaviour and mass transport occurring inside the reactor. The experiments were performed based on a developed CCD-RSM model, while the desirability function (DF) was used for optimization of the process. Findings showed that the highest MP degradation percentage was 98.70% at optimal operating values including 20 mg L-1, 0.60 g L-1, 8 and 40 min for MP concentration, catalyst dosage, pH, and reaction time, respectively. This study clearly demonstrated that high degradation efficiency can be achieved using a spiral-shaped photocatalytic reactor rather than a traditional annular reactor at same conditions. The increase in reaction rate is related to the higher average turbulence kinetic energy in the spiral-shaped reactor over the traditional reactor, which results in the increased diffusivity and improves the mass and momentum transfer.

9.
Anal Chem ; 94(18): 6781-6790, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35467838

RESUMO

A photoactive molecularly imprinted poly(2,5-benzimidazole)-modified vanadium dioxide-cupric tungstate (VO2-CuWO4) as an efficient photosensitive n-n type-II heterojunction thin film was electrochemically deposited on Ti substrate for the selective and robust photoelectrochemical (PEC) bioanalysis of dopamine (DA). The optical absorption of n-VO2/n-CuWO4 type-II heterojunction was capably broadened toward the visible region, which permitted superior light-harvesting and robust carriers generation, separation, and transfer processes significantly enhancing the anodic photocurrent, as confirmed by a series of PEC analyses. Findings revealed that the as-prepared label-free MIP-PEC sensor can quantitatively monitor DA in a linear range of 1 nM to 200 µM with a detection limit of 0.15 nM. This MIP-PEC sensor showed robust selectivity under conditions with high concentrations of interfering substances, which can be recovered in the real samples of urine, cocoa chocolate, and diluted yogurt, indicating its promising potential applications in biological and food samples. This work not only featured the use of photoelectrically active MIP/VO2-CuWO4 for PEC detection of DA, but also provided a new horizon for the design and implementation of functional polymers/metal oxides heterojunction materials in the field of PEC sensors and biosensors.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Benzimidazóis , Dopamina , Limite de Detecção
10.
Mikrochim Acta ; 189(3): 103, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35157153

RESUMO

A new epidemic of acute respiratory viral pneumonia was discovered in central China at the end of 2019. The disease was given the name coronavirus disease 2019 (COVID-19), and the virus that caused this disease was known as severe acute respiratory syndrome coronavirus (SARS-CoV-2). So far, diagnostic methods have been focused on (a) human antibody detection, (b) viral antigen detection and (c) viral gene detection, the latter using RT-PCR being the most accurate approach. In this paper, we present a summary of the COVID-19 pandemic, clinical features and epidemiology and pathogenesis. Also, we focus on the recent advances in bioanalytical diagnostic methods based on various techniques for SARS-CoV-2 sensing that have recently been published (2020-2021). Furthermore, we present the mechanisms, advantages and disadvantages of the most common biosensors for COVID-19 detection, which include optical, electrochemical and piezoelectric biosensors as well as wearable and smart nanobiosensors, immunosensors, aptasensors and genosensors.


Assuntos
Teste para COVID-19 , COVID-19/diagnóstico , SARS-CoV-2 , Animais , Técnicas Biossensoriais , COVID-19/epidemiologia , Técnicas Eletroquímicas , Humanos , Imunoensaio
11.
Chemosphere ; 291(Pt 2): 132670, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34710450

RESUMO

In this study, a fixed-bed column packed with an activated carbon (Pinus eldarica stalks (PES-AC)) was used to evaluate the performance of paraquat removal from wastewater. The effect of bed height, initial paraquat concentration, contact time, flow rate on the removal of paraquat was investigated using response surface methodology (RSM) based on central composite design (CCD). From the RSM model, the optimum experimental conditions to achieve 94.65% removal of paraquat were solution pH of 8.0, 6 mg L-1 of paraquat, 4 mL min-1 of flow rate, 0.8 cm of the bed height, and 40 min of contact time. The breakthrough data were significantly fitted with Thomas, bed depth services time (BDST), and Yoon-Nelson models. The high values of NBD (14.33, 32.29, and 54.46 mg L-1) and critical bed depth (0.396, 0.370, and 0.330 cm) obtained from BDST model revealed the high efficiency and suitability of the adsorbent. Adsorption of paraquat on PES-AC was strongly dependent on solution pH, indicating an electrostatic attraction mechanism.


Assuntos
Pinus , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Paraquat , Projetos de Pesquisa , Poluentes Químicos da Água/análise
12.
Chemistry ; 27(72): 17999-18014, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34672043

RESUMO

Photocatalysis has been known as one of the promising technologies due to its eco-friendly nature. However, the potential application of many photocatalysts is limited owing to their large bandgaps and inefficient use of the solar spectrum. One strategy to overcome this problem is to combine the advantages of heteroatom-containing supports with active metal centers to accurately adjust the structural parameters. Metal nanoparticles (MNPs) and single atom catalysts (SACs) are excellent candidates due to their distinctive coordination environment which enhances photocatalytic activity. Metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and carbon nitride (g-C3 N4 ) have shown great potential as catalyst support for SACs and MNPs. The numerous combinations of organic linkers with various heteroatoms and metal ions provide unique structural characteristics to achieve advanced materials. This review describes the recent advancement of the modified MOFs, COFs and g-C3 N4 with SACs and NPs for enhanced photocatalytic applications with emphasis on environmental remediation.

13.
J Environ Manage ; 300: 113707, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34534759

RESUMO

Selective removal of contaminants from water by membranes is of practical importance for water purification and environmental protection. In the present study, through an in-situ polymerization process, a novel composite of Fe3O4/molecularly imprinted resorcinol -formaldehyde-melamine resin (Fe3O4/MIRFMR) was synthesized. Then, the novel membrane was prepared from a tea filter bag (TFB) as a base substrate which was subsequently coated by a casting solution containing polyvinylidene fluoride (PVDF) matrix, Prunus scoparia gum as a hydrophilic agent and Fe3O4/MIRFMR as selective filler by phase inversion technique. Resorcinol as functional monomers with multiple hydrophilic groups such as -OH, -NH2 and -NH-, were used for selective removal of Rhodamine B (RhB) as target molecule. The Fe3O4/MIRFMR/PVDF/TFB membranes were characterized by FE-SEM, XRD, FTIR, BET, VSM, water contact angle (WCA) and mechanical analysis. The filtration and adsorption of RhB on the prepared membrane was investigated parameters in a cross-module filtration setup. Casting solution containing 0.01 g of Fe3O4/MIRFMR as optimum value showed good wettability, high water flux (42.5 L/m2 h), flux recovery ratio (88.9%), RhB removal efficiency (95.8%). The selectivity of 4.9, 3.3, 2.1 and 2.5 was found to be for RhB compared to AB, MG, EB, and TB dye. It seems that the fabricated membrane could be an effective and selective option for wastewater containing pollutants. The high removal efficiency, fouling resistance, good wettability and stability of the fabricated membrane are promising for use in practical water filtration, especially for selective removal of dyes.


Assuntos
Corantes , Membranas Artificiais , Fenômenos Magnéticos , Polivinil
14.
Talanta ; 232: 122449, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074433

RESUMO

Antibiotics, such as sulfadiazine and sulfathiazole, are widely used in veterinary applications which can result in remains in edible animal products. Therefore, there is an immense need for a reliable, selective, sensitive, and simple analytical technique for monitoring the concentration of sulfadiazine (SDZ) and sulfathiazole (STZ) in edible animal products. In this regard, we developed a magnetic dual template molecularly imprinted polymer (MMIP) to determine the SDZ and STZ in milk samples. For the sensitive and selective extraction and determination of target analytes, MMIPs have been combined with the syringe-to-syringe magnetic solid-phase microextraction (SS-MSPME) method. In addition, we used central composite design (CCD) for the extraction of SDZ and STZ. With optimum conditions, an efficient, rapid, and convenient technique for the preconcentration and determination of SDZ and STZ in milk samples by SS-MSPME coupling with HPLC-UV was developed. Using our combined approach, the limits of detection are 0.9 and 1.3 ng mL-1 for SDZ and STZ, respectively, along with good linearity and determination coefficients higher than 0.98. Our method demonstrates a practical approach for the deduction of antibiotics in milk samples with high recoveries and selectivity.


Assuntos
Impressão Molecular , Sulfadiazina , Animais , Cromatografia Líquida de Alta Pressão , Fenômenos Magnéticos , Leite/química , Polímeros Molecularmente Impressos , Extração em Fase Sólida , Sulfadiazina/análise , Sulfatiazóis , Seringas
15.
Anal Methods ; 13(23): 2603-2611, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34027952

RESUMO

We report a colorimetric sensor for the detection of Hg2+ ions utilizing surface-modified gold nanoparticles. Gold nanoparticles (GNPs) were synthesized by direct reduction and were subsequently functionalized using Schiff base ligands. Schiff base ligands as electron transfer agents have been frequently used for the determination of heavy metal ions. From the spectroscopic analysis, it was found that the mechanism could be defined as coordination between azomethine nitrogen and the carbonyl oxygen of the ligand with Hg2+ ions. The affinity of Hg2+ ions towards the bidentate Schiff base on the GNPs result from their self-aggregation and investigated to be a powerful asset for the development of Hg2+ ion-selective sensors, which is accompanied by a visible color change from pink to purple or can be detect by UV-Vis spectroscopy. The optimized structures and binding mechanisms were supported with a high correlation and agreement via spectroscopy and DFT calculations. These simple colorimetric tests can be extended for the rapid pre-screening of a wide variety of heavy metal ions for onsite detection and mitigation.


Assuntos
Mercúrio , Nanopartículas Metálicas , Colorimetria , Ouro , Íons , Bases de Schiff
16.
Hemoglobin ; 45(2): 103-106, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33896336

RESUMO

Thalassemia, which is associated with compound complications, is the most common hereditary anemia in the world. The zinc level is different in patients with thalassemias. This study aimed to determine the zinc status and its relationship with demographic factors and chelation therapy in ß-thalassemia major (ß-TM) patients. This cross-sectional study was conducted on 102 ß-thalassemia (ß-thal), patients. Zinc level was evaluated in subjects using the atomic absorption method. The results were analyzed through descriptive statistics, χ2 and Mann-Whitney U tests. Of 102 cases, 92 patients were eligible and evaluated. The mean age was 23 (minimum 11, maximum 43) years. Forty-six percent of cases were males and 54.0% were females. Of the 92 patients taking iron chelators, 29.3% used deferoxamine (DFO), 16.3% deferasirox (DFX), 20.6% DFO and deferiprone (DFP), and 33.8% DFO and DFP. All cases had zinc deficiency, 89.1% had zinc levels <40.0 mg/dL, and 10.9% with zinc levels >40.0 mg/dL. There was a significant relationship between gender and group with zinc levels greater than 40.0 mg/dL and those with less than 40.0 mg/dL. Zinc deficiency is highly prevalent among patients with thalassemia in the city of Yasuj, Iran. There was a significant relationship between zinc levels and gender although no significance was observed between zinc level and age, body mass index (BMI), ferritin, and chelation factors; it is recommended that these patients be periodically evaluated for zinc level. In case of a lack of laboratory evaluation, the use of prophylactic zinc supplementation should be considered for these patients.


Assuntos
Sobrecarga de Ferro , Talassemia , Zinco , Talassemia beta , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Benzoatos , Talassemia beta/tratamento farmacológico , Talassemia beta/epidemiologia , Estudos Transversais , Deferasirox , Deferiprona , Desferroxamina , Irã (Geográfico)/epidemiologia , Quelantes de Ferro , Piridonas , Estudos Retrospectivos , Triazóis , Zinco/sangue
17.
Talanta ; 221: 121547, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076106

RESUMO

Present work is the preparation of novel magnetic nanofluids based on deep eutectic solvent and used for the rapid microextraction of methylparaben (MP), propylparaben (PP), and butylparaben (BP) from cosmetics samples using syringe-to-syringe dispersive magnetic nanofluid microextraction procedure (SS-DMNF-ME). The optimization of the extraction of MP, PP, and BP was performed through central composite design (CCD). The optimum extraction conditions were assessed by optimizing pH, nanofluid volume, NaCl concentration, cycle number, and methanol volume. pH 8.0, 200 µL of magnetic nanofluid, 6% w/v of NaCl, eight cycles of injection/back injection, and 80 µL of methanol were the optimum extraction conditions, with the maximum recoveries of 98.62%, 100.92%, and 99.13% for MP, PP, and BP, respectively. The figures of merit calculated under the optimum condition were achieved from the CCD, and the developed method exhibited the low limits of quantitation (4.3, 3.0, and 2.7 ng mL-1) and detection (1.3, 0.9, and 0.8 ng mL-1) for MP, PP, and BP, respectively, as well as excellent linearity with R2 > 0.99. The relative recoveries of three parabens in the actual samples were 85.99-99.07% with relative standard deviations ≤5.52%. In comparison to other extraction methods, SS-DMNF-ME was readily and rapidly determined MP, PP, and BP using HPLC-UV, and experimental data showed the efficiency, robustness, and reliability of the proposed method.

18.
Talanta ; 221: 121620, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076148

RESUMO

In this study, a magnetic molecularly imprinted polymer (MMIP (Fe3O4@SiO2-MIP)) was used for the dispersive magnetic solid-phase microextraction (d-MSP-µ-E) to design an easy and effective method for melatonin (MLT) extraction in the methanolic extract of Portulaca oleracea, human urine and plasma, and water samples. HPLC with UV detection was utilized, and pH, the type and volume of eluent, MMIP mass, and contact time were considered as effective factors in the study of MLT separation and pre-concentration. These factors were optimized by Plackett-Burman and multi-objective response surface methodology (RSM). The values were 10 mg, 14 min, 4.2, methanol, 0.180 mL, 2.5 min, for the MMIP mass, time of sorption, sample pH, eluent type, eluent volume, and time of elution, respectively. At the optimum conditions, the limit of detection (LOD) was 0.046 ng mL-1, and the limit of quantification (LOQ) was 0.156 ng mL-1. The sorption capacity of the proposed MMIP sorbent was 109.1 mg g-1 at the optimum conditions. Besides, linear dynamic range (LDR) was 0.2-4200 ng mL-1, and the precision of the method (RSD %) for triplicate measurements was <6.1%. The MMIP showed saturation magnetization of 19.75 emu g-1, resulting in fast separation of the sorbent. The sorption test revealed the high sorption capacity of the MMIP for MLT and its homogeneous binding sites. In all spiked levels (50, 100, 200, and 500 ng mL-1), 93.07-104.1% was the range obtained for the recovery of MLT. The relative selectivity factor (ß) values of MLT/tryptophan, MLT/serotonin, MLT/ferulic acid, MLT/mefenamic acid, MLT/quercetin, MLT/luteolin, and MLT/chlorogenic acid were 1.60, 1.68, 2.02, 2.38, 2.32, 2.40, and 2.50, respectively. The results of desorption-regeneration cycles (seven times) by employing the MMIP showed the high stability of the resultant material. In conclusion, the MMIP combined with the magnetic separation showed a specific sorption behavior for MLT and suggested a simple, flexible, selective, and powerful analytical tool.


Assuntos
Melatonina , Impressão Molecular , Portulaca , Adsorção , Cromatografia Líquida de Alta Pressão , Humanos , Limite de Detecção , Metanol , Extratos Vegetais , Polímeros , Dióxido de Silício , Água
19.
J Hazard Mater ; 410: 124560, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33243639

RESUMO

There have always been numerous challenges to designing a cost-effectiveness, reusable and robust adsorbents for simultaneous heavy metal ion remediations from wastewaters. Herein, a novel kind of nanocomposite relying on the synergic impact of magnetic Fe3O4, FeMoS4-2, and magnesium-aluminum layered double hydroxide (MgAl-LDH) using loading the FeMoS4-2 on protonated Fe3O4 and adhered to the surface of Mg/Al-LDH (Fe3O4/FeMoS4/MgAl-LDH). The nanocage structures adsorbent was characterized via FT-IR, XRD, FE-SEM, EDX, and VSM techniques and demonstrated having an efficient adsorption capability to common cationic pollutants (Pb (II), Cd (II) and Cu (II) by batch experiments. Disparate chief parameters affecting adsorption performance, including Fe3O4/FeMoS4/MgAl-LDH mass, metal ion concentrations, solution pH, and contact time were considered and optimized through central composite design (CCD) in detail. Its supreme adsorption efficiency toward Pb (II), Cd (II), and Cu (II) accounted for 190.75, 140.50, and 110.25 mg g-1, respectively, which acquired by the Langmuir model under the parameter set at 60 min contact time, solution pH at 5, 0.03 g the Fe3O4/FeMoS4/MgAl-LDH and metal ion concentrations ranging from 10 to 300 mg L-1. Such enhancement stemmed from the coordinated complexes in the LDH interlayer region and electrostatic attraction between Fe3O4/FeMoS4/MgAl-LDH and metal ions. Furthermore, the adsorption conducts were more consistent with the pseudo-second-order model and the Langmuir isotherm model, respectively. Likewise, the features such as the superior regeneration and reusability allow the Fe3O4/FeMoS4/MgAl-LDH nanocomposite to constitute as one of the promising materials for heavy metals remediation in wastewater.

20.
Carbohydr Polym ; 254: 116806, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357837

RESUMO

A reactive and mechano-chemically stable support was prepared from Ag-nanoparticles decorated polyester fabric which was subsequently coated by a casting solution containing polyvinylidene fluoride matrix, guar gum (GG) exo-polysaccharide hydrophilic agent, and UiO-66 filler. FE-SEM, XRD, FT-IR, water contact angle technique, and mechanical stability tests were applied to characterize the prepared membranes. The water contact angle measurements indicated the hydrophilicity of the prepared membrane which can be attributed to the nature of bio-GG and UiO-66. The prepared membrane was employed for purifying contaminated waters containing N-cetyl-N,N,N-trimethylammonium bromide (CTAB) and congo-red (CR) dye through a cross-module set-up. The central composite design was also exploited to study the effect of operational parameters such as CTAB and CR concentration, pH solution, and pressure on the removal efficiency. Particularly, the bio-based GG/UiO-66 dispersion showed excellent self-healing properties, which enabled an effective pollutant separation ability and facilitated the recyclability/sustainability of the as-prepared membrane.


Assuntos
Galactanos/química , Mananas/química , Gomas Vegetais/química , Poliésteres/química , Purificação da Água/métodos , Cetrimônio/isolamento & purificação , Corantes/isolamento & purificação , Vermelho Congo/isolamento & purificação , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Nanopartículas Metálicas/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Estrutura Molecular , Polivinil , Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Têxteis , Poluentes Químicos da Água/isolamento & purificação , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...