Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Hum Exp Toxicol ; 42: 9603271231169911, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37072122

RESUMO

BACKGROUND: Zearalenone (ZEA) is a mycotoxin produced by fungi and induces cytotoxicity by the generation of reactive oxygen species. The aim of this study was to evaluate and compare the nephroprotective effects of crocin and nano-crocin against ZEA-induced toxicity in HEK293 cell line via modulation of oxidative stress and special formulation to make nano-crocin. METHOD: Nano-crocin physicochemical properties, such as size, load, appearance, and drug release profile were determined. Also, the viability of intoxicated HEK293 cells was evaluated by MTT assay. Furthermore, lactate dehydrogenase lipid Peroxidation (LPO), and oxidative stress biomarkers were measured. RESULT: The best nano-crocin formulation with superior entrapment effectiveness (54.66 ± 6.02), more significant drug loading (1.89 ± 0.01), better zeta potential (-23.4 ± 2.844), and smaller particle size (140.3 ± 18.0 nm) was chosen. This study showed that treatment with crocin and nano-crocin in ZEA-induced cells, significantly decreased LDH and LPO levels and increased superoxide dismutase (SOD), catalase (CAT) activities, and total antioxidant capacity (TAC) levels compared to the control group. Moreover, nano-crocin had a more curative effect against oxidative stress than crocin. CONCLUSION: Niosomal structure of crocin, when administered with the special formulation, may be more beneficial in reducing ZEA-induced in vitro toxicity than conventional crocin.


Assuntos
Zearalenona , Humanos , Células HEK293 , Zearalenona/toxicidade , Antioxidantes/uso terapêutico , Carotenoides/farmacologia , Carotenoides/uso terapêutico , Estresse Oxidativo
2.
Peptides ; 158: 170892, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36240982

RESUMO

High serum insulin-like growth factor 1 (IGF-1) and positive Helicobacter pylori (H. pylori) may increase the risk of gastric cancer (GC). We aimed to investigate IGF-1 serum levels in different stages of GC patients and their association with H. pylori status. A total of 90 participants, including 60 GC patients and 30 noncancerous (NC) individuals, were included in the present study. IGF-1 serum levels and candidate proteins were assessed using enzyme-linked immunosorbent and immunohistochemistry techniques. Likewise, Giemsa staining was applied to detect H. pylori infection. The candidate genes' expression, including IGF-1R, PI3KCA, AKT1, mTOR1, KRAS, BRAF, and ERK1, was also evaluated by a real-time PCR assay. The results of advanced GC stages indicated a significantly high IHC score for IGF-1R and phosphorylated AKT, mTOR, and ERK proteins compared to the early stages. Moreover, IGF-1 serum levels and the expression of candidate genes were considerably increased in the advanced GC patients compared to the early stages and the positive H. pylori status compared to the negative H. pylori status (P < 0.05). As a result, high IGF-1 serum levels and positive H. pylori status may be correlated with gastric tumor progression, and the inhibition of IGF-1 and the eradication of H. pylori infection might be new therapeutic targets in GC patients.


Assuntos
Infecções por Helicobacter , Fator de Crescimento Insulin-Like I , Neoplasias Gástricas , Humanos , Infecções por Helicobacter/sangue , Infecções por Helicobacter/complicações , Fator de Crescimento Insulin-Like I/metabolismo , Neoplasias Gástricas/sangue , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia
3.
Lasers Med Sci ; 31(9): 1775-1782, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27517690

RESUMO

Low-level laser therapy (LLLT) is a form of photon therapy which can be a non-invasive therapeutic procedure in cancer therapy using low-intensity light in the range of 450-800 nm. One of the main functional features of laser therapy is the photobiostimulation effects of low-level lasers on various biological systems including altering DNA synthesis and modifying gene expression, and stopping cellular proliferation. This study investigated the effects of LLLT on mice mammary tumor and the expression of Let-7a, miR155, miR21, miR125, and miR376b in the plasma and tumor samples. Sixteen mice were equally divided into four groups including control, and blue, green, and red lasers at wavelengths of 405, 532, and 632 nm, respectively. Weber Medical Applied Laser irradiation was carried out with a low power of 1-3 mW and a series of 10 treatments at three times a week after tumor establishment. Tumor volume was weekly measured by a digital vernier caliper, and qRT-PCR assays were performed to accomplish the study. Depending on the number of groups and the p value of the Kolmogorov-Smirnov test of normality, a t test, a one-way ANOVA, or a non-parametric test was used for data analyses, and p < 0.05 was considered to be statistically significant. The average tumor volume was significantly less in the treated blue group than the control group on at days 21, 28, and 35 after cancerous cell injection. Our data also showed an increase of Let-7a and miR125a expression and a decrease of miR155, miR21, and miR376b expression after LLLT with the blue laser both the plasma and tumor samples compared to other groups. It seems that the non-invasive nature of laser bio-stimulation can make LLLT an attractive alternative therapeutic tool.


Assuntos
Neoplasias da Mama/radioterapia , Terapia com Luz de Baixa Intensidade/métodos , MicroRNAs/metabolismo , Animais , Proliferação de Células , Expressão Gênica , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...