Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Res Tech ; 87(7): 1615-1626, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38445461

RESUMO

Acute lymphoblastic leukemia (ALL) is a life-threatening disease that commonly affects children and is classified into three subtypes: L1, L2, and L3. Traditionally, ALL is diagnosed through morphological analysis, involving the examination of blood and bone marrow smears by pathologists. However, this manual process is time-consuming, laborious, and prone to errors. Moreover, the significant morphological similarity between ALL and various lymphocyte subtypes, such as normal, atypic, and reactive lymphocytes, further complicates the feature extraction and detection process. The aim of this study is to develop an accurate and efficient automatic system to distinguish ALL cells from these similar lymphocyte subtypes without the need for direct feature extraction. First, the contrast of microscopic images is enhanced using histogram equalization, which improves the visibility of important features. Next, a fuzzy C-means clustering algorithm is employed to segment cell nuclei, as they play a crucial role in ALL diagnosis. Finally, a novel convolutional neural network (CNN) with three convolutional layers is utilized to classify the segmented nuclei into six distinct classes. The CNN is trained on a labeled dataset, allowing it to learn the distinguishing features of each class. To evaluate the performance of the proposed model, quantitative metrics are employed, and a comparison is made with three well-known deep networks: VGG-16, DenseNet, and Xception. The results demonstrate that the proposed model outperforms these networks, achieving an approximate accuracy of 97%. Moreover, the model's performance surpasses that of other studies focused on 6-class classification in the context of ALL diagnosis. RESEARCH HIGHLIGHTS: Deep neural networks eliminate the requirement for feature extraction in ALL classification The proposed convolutional neural network achieves an impressive accuracy of approximately 97% in classifying six ALL and lymphocyte subtypes.


Assuntos
Linfócitos , Redes Neurais de Computação , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/classificação , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Linfócitos/patologia , Linfócitos/citologia , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Microscopia/métodos
2.
J Chem Neuroanat ; 131: 102290, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37225059

RESUMO

OBJECTIVE: Inhalation exposure to crude oil vapor (COV) and petroleum products is considered responsible for neurobehavioral toxicity in human and animal models. The antioxidant activity of quercetin (Que) and its derivatives are promising for protecting the hippocampus. This study aimed to evaluate the neuroprotective role of Que against COV-induced behavioral alterations and hippocampus damage. METHODS: Eighteen adult male Wistar rats were randomly divided into the following three groups (n = 6): the control, the COV, and the COV + Que group. The inhalation method was used to expose the rats to crude oil vapors for 5 h daily, and Que (50 mg/kg) was administered orally. After 30 days of treatment, the spatial working memory and anxiety levels were evaluated using the cross-arm maze and elevated plus maze (EPM), respectively. TUNEL assay and hematoxylin-eosin (H&E) staining were used to identify the necrosis, normal and apoptotic cells in the hippocampus. Moreover, the levels of oxidative stress biomarkers including malondialdehyde (MDA), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (TAC) were investigated in the hippocampus tissue. RESULTS: The results indicated that exposure to COV was associated with a significant decrease in spatial working memory and activity of CAT, TAC, SOD, and GPx enzymes compared to the control (P < 0.05). Moreover, COV significantly increased the level of anxiety, MDA, and hippocampal apoptosis (P < 0.05). The simultaneous administration of quercetin along with exposure to COV improved the behavioral alterations, activity of antioxidant enzymes, and hippocampal apoptosis. CONCLUSIONS: These findings suggest that quercetin prevents COV-induced hippocampal damage by enhancing the antioxidant system and preventing cell apoptosis.


Assuntos
Antioxidantes , Quercetina , Humanos , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Quercetina/farmacologia , Quercetina/uso terapêutico , Ratos Wistar , Exposição por Inalação , Estresse Oxidativo , Hipocampo/metabolismo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo
3.
Behav Pharmacol ; 34(1): 45-54, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36752577

RESUMO

Chemical stimulation of the lateral hypothalamus (LH) induces analgesia by forming neural circuitries with multiple brain regions. The involvement of hippocampal dopaminergic receptors in the LH stimulation-induced antinociception in specific pain models in animals has been documented. However, because the neural circuitries involved in the mediation of orofacial pain are not the same as those that mediate the other types of pain, the present study aims to detect the role of dopamine receptors within the dentate gyrus (DG) in the antinociceptive responses induced by LH stimulation in an animal model of orofacial pain. Male Wistar rats (220-250 g) were implanted with two separate cannulae into the LH and DG on the same side. D1- or D2-like dopamine receptor antagonist, SCH23390, or sulpiride (0.25, 1, and 4 µg) were microinjected into the DG, five minutes before intra-LH injection of carbachol (250 nM). The animals were then injected with formalin 1% (50 µL; sc) into the upper lip lateral to the nose and subjected to the orofacial formalin test. Intra-DG administration of SCH23390 or sulpiride attenuated the antinociceptive responses induced by intra-LH microinjection of carbachol during the orofacial formalin test. The findings of the current study suggest that chemical stimulation of the LH modulates orofacial pain, possibly through activation of the DG dopaminergic neurons. Due to the high incidence and prevalence of orofacial pain in the general population, understanding how such neuronal circuitry modulates nociceptive processing will advance the search for novel therapeutics.


Assuntos
Dor Facial , Sulpirida , Humanos , Ratos , Masculino , Animais , Ratos Wistar , Carbacol/farmacologia , Sulpirida/farmacologia , Hipocampo , Dopamina , Receptores Dopaminérgicos/fisiologia , Analgésicos/farmacologia , Giro Denteado
4.
Basic Clin Neurosci ; 13(5): 637-646, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37313025

RESUMO

Introduction: Parkinson disease (PD) results from the destruction of dopaminergic neurons in the brain. This study aimed to investigate the protective effects of natural antioxidants such as caffeic acid phenethyl ester (CAPE) to maintain these neurons. Methods: CAPE is one of the main ingredients of propolis. Intranasal administration of 1-methyl-4-phenyl-2;3;4;6-tetrahydropyridine (MPTP) was used to generate a PD model in rats. A total of 2×bone marrow stem cells (BMSCs) were injected from the tail vein. Behavioral tests, immunohistochemistry, DiI, cresyl fast violet, and TUNEL staining were used to evaluate the rats 2 weeks after treatment. Results: In all treatment groups with stem cells, the DiI staining method revealed that the cells migrated to the substantia nigra pars compacta after injection. Treatment with CAPE significantly protects dopaminergic neurons from MPTP. The highest number of tyrosine hydroxylase (TH) positive neurons was seen in the pre-CAPE+PD+stem cell (administration of CAPE, then the creation of PD, finally injection of stem cells) group. The number of TH+cells in all groups that received CAPE was significant compared to groups that received the stem cells only (P<0.001). Intranasal administration of MPTP significantly increases the number of apoptotic cells. The lowest number of apoptotic cells was in the CAPE+PD+stem cell group. Conclusion: The results showed that the use of CAPE and stem cells in Parkinson rats caused a significant reduction in the apoptotic cells.

5.
Metab Brain Dis ; 35(6): 991-997, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32458336

RESUMO

Brain stroke is one of the causes of human death and disability worldwide. Global ischemia results in the accumulation of free radicals in the neurons. It leads to histologically brain damage. The CA1 region of the hippocampus is a sensitive area for free radicals. This study investigated the combined therapy of the Granulocyte colony stimulating factor (G-CSF) and the Intravenous lipid emulsion (ILE). These neuroprotective agents play a role in the regeneration of neurons. They improve the learning ability and memory in rats induced global ischemia. We divided 35 rats into five groups. The groups were sham group, ischemia group, G-CSF group, ILE group, and G-CSF plus ILE group. Ischemia was induced by occlusion of the bilateral common carotid about 10 min. The drugs applied on days 1, 3 and 7. The treated groups received subcutaneous injection of 20 µg/kg G-CSF and intravenous injection of 5 ml/kg ILE. After two weeks, the memory and learning ability of the rats was evaluated by the shuttle box. Hematoxylin and Eosin and Nissl and TUNEL stainings were used to determine the necrosis, normal and apoptotic cells. The combined therapy increased normal cells compared to the ischemia group. They decreased the number of necrotic and apoptosis cells in other groups. The combined group improved the passive avoidance test compared to the other groups. The combination therapy of G-CSF plus ILE is more effective than each alone.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Região CA1 Hipocampal/efeitos dos fármacos , Emulsões Gordurosas Intravenosas/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Quimioterapia Combinada , Masculino , Ratos , Ratos Wistar
6.
Iran Biomed J ; 24(2): 89-98, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31677610

RESUMO

Background: Recent studies have shown that bone marrow mesenchymal stem cells (BMSCs) have a putative ability to promote neurogenesis and produce behavioral and functional improvement. Our previous study demonstrated that co-treatment of granulocyte colony-stimulating factor (G-CSF) and BMSCs have beneficial effects on Parkinson's models. The main purpose of this research was to investigate the effects of these two factors on oxidative stress factors in the brain of Parkinson's rat. Methods: Adult male Wistar rats (weighing 200­250 g) were used and randomly divided into five groups of seven each. To create the Parkinson's model, 6-OHDA was injected into the left substantia nigra pars compacta. The BMSCs (2 × 106) and G-CSF (75 µg/kg) were used for treatment after creating the PD model. After four weeks, the brains of rats were removed and processed for immunohistochemical studies, such as tyrosine hydroxylase-positive neurons as well as analysis of oxidative stress factors. Results: The results showed that the injected BMSCs could cross the BBB. The injected cells are also able to settle in different areas of the brain. Analyses of the brain oxidative stress factors showed that G-CSF and BMSCs reduced the expression of malondialdehyde and induced the activity of superoxide dismutase, glutathione, and peroxidase ferric reducing ability of plasma. Conclusion: Co-administration of G-CSF and BMSC reduced the expression of pro-inflammatory cytokines and induced the activity of antioxidant enzymes; however, neurogenesis increased in the brain.


Assuntos
Fator Estimulador de Colônias de Granulócitos/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Neurogênese/fisiologia , Estresse Oxidativo/fisiologia , Doença de Parkinson/terapia , Animais , Barreira Hematoencefálica/fisiologia , Encéfalo/patologia , Modelos Animais de Doenças , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Oxidopamina/toxicidade , Doença de Parkinson/patologia , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Serina-Treonina Quinases TOR/metabolismo
7.
Iran J Basic Med Sci ; 22(7): 722-728, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32373292

RESUMO

OBJECTIVES: Exercise ameliorates the quality of life and reduces the risk of neurological derangements such as Alzheimer's (AD) and Parkinson's disease (PD). Irisin is a product of the physical activity and is a circulating hormone that regulates the energy metabolism in the body. In the nervous system, Irisin influences neurogenesis and neural differentiation in mice. We previously demonstrated that co-treatment of bone marrow stem cells (BMSCs) with a neurotrophic factor reduce Parkinson's symptoms. Our goal in this project was to evaluate whether Irisin with BMSCs can protect the dopaminergic (DA) neurons in PD. MATERIALS AND METHODS: 35 adult male Wistar rat weighing (200-250 g) were chosen. They were separated into five experimental groups (n=7). To create a Parkinson's model, intranasal (IN) administration of the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) was used. The BMSCs (2×106) and Irisin (50 nm/ml) was used for 7 days for treatment after creation of the PD model. After completion of the tests (4 weeks), their brains were used for the TUNEL and immunohistochemical (IHC) assays. RESULTS: One of the important results of this study was that the Irisin induce BMSCs transport into the injured area of the brain. Co-treatment of the Irisin with BMSCs increased tyrosine hydroxylase-positive neurons (TH+) in substantia nigra (SN) and striatum of the PD mice brain. In this group, the number of TUNEL-positive cells significantly decreased. Behavioral symptoms were better in the combination group and Irisin simultaneously. CONCLUSION: Co- treatment of Irisin with BMSCs protects the DA neurons from degeneration and apoptotic process after MPTP injection.

8.
Iran J Basic Med Sci ; 19(7): 741-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27635198

RESUMO

OBJECTIVES: The main characteristic of mesenchymal stem cells (MSCs) is their ability to produce other cell types. Electromagnetic field (EMF) stimulates differentiation of MSCs into other cells. In this study, we investigated whether EMF can effect on the differentiation of MSCs into dopaminergic (DA) neurons. MATERIALS AND METHODS: An EMF with a frequency of 50 Hz and two intensities of 40 and 400 µT 1hr/day was generated around the cells for a week. Afterwards, these cells were injected into the left ventricle of Parkinsonian rats. The rats survived for 2 weeks, and then sampling was performed. RESULTS: The injected cells differentiated into DA neurons and sporadically settled in the substantia nigra pars compacta (SNpc). Transplanted rats exhibited significant partial correction apomorphine-induced rotational behavior compared to Parkinsonian rats (5.0±0.1 vs 7.57±0.08). Results demonstrated that endogenous serum and brain derived neurotrophic factor (BDNF) were altered in all experimental groups. The greatest increase was in group of 400 µT EMF in comparison with Parkinsonian rats (398±15 vs. 312±11.79 pg / mg). Current study have shown that 6-Hydroxydopamine can cause severe loss of dopaminergic neurons (68±6.58), but injected MSCs that exposed to 40 and 400 µT EMF increased dopaminergic neurons in SNpc (108±2.33 & 126±3.89) (P<0.001). CONCLUSION: Electromagnetic fields with particular frequencies stimulate MSCs. So, these cells had anti-Parkinsonian properties in our studies.

9.
Iran J Basic Med Sci ; 19(12): 1318-1324, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28096964

RESUMO

OBJECTIVES: Granulocyte-colony stimulating factor (G-CSF) is used in clinical practice for the treatment of neutropenia and to stimulate generation of hematopoietic stem cells in bone marrow donors. In the present study, the ability of G-CSF in mobilizing exogenous bone marrow stem cells (BMSCs) from peripheral blood into the brain was tested. We for the first time injected a small amount of BMSCs through the tail vein. MATERIALS AND METHODS: We choose 25 male Wistar rats (200-250 g) were lesioned by 6-OHDA injected into the left substantia nigra, pars compacta (SNpc). G-CSF (70 µg/kg/day) was given from the 7th day after lesion for five days. The BMSCs (2×105) were injected through the dorsal tail vein on the 7th day after lesion. RESULTS: The number of rotations was significantly lower in the stem cell therapy group than in the control group. In the third test in the received G-CSF and G-CSF+stem cells groups, animals displayed significant behavioral recovery compared with the control group (P<0.05). There was a significant difference in the average of dopaminergic neurons in SNpc between the control group and G-CSF and G-CS+stem cells groups. We didn't detect any labeling stem cells in SNpc. CONCLUSION: G-CSF can't mobilize low amounts of exogenous BMSCs from the blood stream to injured SNpc. But G-CSF (70 µg/kg) is more neuroprotective than BMSCs (2×105 number[w1] of BMSCs). Results of our study suggest that G-CSF alone is more neuroprotective than BMSCs.

10.
Iran Biomed J ; 18(4): 239-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25326023

RESUMO

BACKGROUND: Stroke is the third leading cause of death. Hypothermia has been recognized as an effective method in reducing brain injury. In this study, we assessed the effects of granulocyte colony-stimulating factor (G-CSF) as a neuroprotective agent and mild hypothermia on mortality, behavioral function, infarct volume, and brain edema in Wistar rats. METHODS: Forty male rats were used in five groups (eight rats in each group): control, hypothermy, G-CSF, combination hypothermy + CSF, and sham. Rats were anesthetized by injection of chloral hydrate (400 mg/kg) intraperitoneally. Transient cerebral ischemia was induced by 60-min intraluminal occlusion of left middle cerebral artery. Hypothermia, initiated at the time of reperfusion and G-CSF was started one hour after reperfusion at a dose of 15 mg/kg subcutaneously. The motor behavior was measured using Garcia's index and animals were assigned for the assessments of infarction, brain swelling, and mortality rate. RESULTS: The mortality was 38.46% (control group) and reduced in other groups. Neurological deficit score of control group (40.31 ± 1.56) was significantly lower than in treatment groups. The total cerebral infarct volume of treatment group was significantly lower than control group (43.96 ± 44.05 mm3). Treatment with hypothermy plus G-CSF (2.69 ± 0.24%) could significantly reduce brain swelling volume than other treatment groups. CONCLUSION: Our major finding is that mild hypothermic treatment plus G-CSF significantly reduced mortality rate and edema and improved neurological function. The results suggest that the combination of hypothermia and G-CSF is more effectively than other treatment groups being used alone.


Assuntos
Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Hipotermia Induzida , Infarto da Artéria Cerebral Média/complicações , Ataque Isquêmico Transitório/terapia , Animais , Edema Encefálico/etiologia , Edema Encefálico/patologia , Edema Encefálico/terapia , Terapia Combinada , Modelos Animais de Doenças , Ataque Isquêmico Transitório/etiologia , Ataque Isquêmico Transitório/patologia , Masculino , Ratos , Ratos Wistar
11.
Pak J Biol Sci ; 17(7): 931-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26035944

RESUMO

Some growth factors, such as Epidermal Growth Factor (EGF), Growth Hormone (GH) and Platelet Derived Growth Factor (PDGF) have beneficial effects on keratinocyte proliferation and wound healing. Although the mechanism of these factors is unclear. In response to injury, growth factors are secreted by kinds of cutaneous cells. The goal of this project is to investigate the factors that could cause proliferate of the keratinocyte cells in vitro. The keratinocytes were removed from rat pups (10 days). Cultured in media with different concentration of GH, PDGF and EGF separately. The proliferation of cells was evaluated by the method of MTT and 3H-thymidine incorporation. Proliferation of keratinocytes was significantly higher in experimental groups than in control group. EGF maximally stimulated at 10 and 25 ng mL(-1). PDGF-BB maximally stimulated at 50 ng mL(-1), respectively. And maximal stimulation of GH was 2.5 IU L(-1). GH, PDGF-BB and EGF stimulate keratinocyte cells proliferation in different concentration. These growth factors could play in healing of the skin.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Hormônio do Crescimento/farmacologia , Queratinócitos/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA