Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 273: 120999, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35193002

RESUMO

The current study proposes a novel analytical method for calculating the breakdown voltage (BV) of transformer oil samples considered as a significant method to assess the safe operation of power industry. Transformer oil samples can be analyzed using the Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy combined with multivariate calibration methods. The partial least squares regression (PLSR) back propagation-artificial neural network (BP-ANN) methods and a genetic algorithm (GA) for variable selection are used to predict and assess breakdown voltage in transformer oil samples from various Iranian transformer oils. As a result, the root mean square error (RMSE) and correlation coefficient for the training and test sets of oil samples are also calculated. In the GA-PLS-R method, the squared correlation coefficient (R2pred) and root mean square prediction error (RMSEP) are 0.9437 and 2.6835, respectively. GA-BP-ANN, on the other hand, had a lower RMSEP value (0.2874) and a higher R2pred function (0.9891). Considering the complexity of transformer oil samples, the performance of GA-BP-ANN has resulted in an efficient approach for predicting breakdown voltage; consequently, it can be effectively used as a new method for quantitative breakdown voltage analysis of samples to evaluate the health of transformer oil. .


Assuntos
Redes Neurais de Computação , Óleos , Irã (Geográfico) , Análise dos Mínimos Quadrados , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
2.
Anal Chem ; 88(7): 3945-52, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26932542

RESUMO

We report here on the development of a chronopotentiometric readout for ion-selective electrodes that allows one to record transition times in continuous flow conditions without the necessity to stop the flow. A sample plug of 150 µL is injected into the carrier solution (0.5 mM NaCl) and subsequently transported to the detection cell (∼20 µL) at moderate flow rates (∼0.5 mL min(-1)), where a short current pulse (5s) is applied between the ionophore-based working electrode and a biocompatible and nonpolarizable Donnan exclusion anion-exchanger membrane reference/counter electrode. Flow conditions bear an influence on the thickness of the aqueous diffusion layer and result in a shift of the chronopotentiometric transition time with respect to stopped flow. Two models based on rotating disk electrodes and flow chronopotentiometry at metal-based electrodes were used to corroborate the data. The method was successfully applied to the determination of calcium, chloride, alkalinity, acidity, and protamine with a range of ion-selective membranes. Because of the limiting exposure time of ca. 20 s of the membranes with the sample, this approach is demonstrated to be useful for the detection of protamine in the therapeutic range of undiluted human blood.


Assuntos
Cálcio/análise , Cloretos/análise , Técnicas Eletroquímicas , Hidróxidos/análise , Polímeros/análise , Protaminas/análise , Prótons , Eletrodos , Heparina/sangue , Humanos , Protaminas/sangue
3.
Anal Chem ; 88(7): 3444-8, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26972891

RESUMO

Potentiometry is known to be sensitive to so-called free ion activity and is a potentially valuable tool in environmental speciation analysis. Here, the direct detection of free and total carbonate is demonstrated by alkalinization of a thin layer sample (∼100 µm), which is electrochemically triggered at a pH responsive membrane placed opposite a carbonate-selective membrane electrode. The concept may serve as a promising future methodology for in situ environmental sensing applications where traditional sampling and pretreatment steps are no longer required. The possibility of increasing the pH of the sample was demonstrated first with a proton selective membrane (pH readout at zero current) placed opposite the thin layer gap. An optimal applied potential (600 mV) for 300 s resulted in a pH increase of 4 units in an artificial sample, with a relative standard deviation (RSD) of ∼2%. The pH probe was subsequently replaced by a solid contact carbonate selective electrode for the determination of carbonate species (4.17 µM) in a sample of 1 mM NaHCO3. Increasing the pH to 12.1 by the electrochemically controlled proton sink allowed one to convert bicarbonate to the detectable carbonate species. Initial bicarbonate concentration (∼1 mM) was obtained as the difference between the converted bicarbonate and the initial carbonate concentration. An initial application of this concept was illustrated by the speciation analysis of an unfiltered sample from the Arve river (12.3 ± 0.2 µM and 22.5 ± 0.3 mM carbonate and bicarbonate, respectively). The values were confirmed by volumetric titration.

4.
ACS Sens ; 1(1): 48-54, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29164863

RESUMO

The work dramatically improves the lower detection limit of anion selective membranes at environmental pH by using local acidification to suppress hydroxide interference at the membrane surface. Three separate localized acidification strategies are explored to achieve this, with ionophore-based membrane electrodes selective for nitrite and dihydrogen phosphate as guiding examples. In a first approach, a concentrated acetic acid solution (ca. 1 M) is placed in the inner filling solution of the PVC-based membrane electrode, forcing a significant acid gradient across the membrane. A second strategy achieves the same type of passive acidification by using an external proton source (fast diffusive doped polypropylene membrane) placed in front of a potentiometric solid contact anion selective electrode where the thin layer gap allows one to observe spontaneous acidification at the opposing detection electrode. The third approach shares the same configuration, but protons are here released by electrochemical control from the selective proton source into the thin layer sample. All three protocols improve the limit of detection by more than 2 orders of magnitude at environmental pH. Nitrite and dihydrogen phosphate determinations in artificial and natural samples are demonstrated.

5.
Anal Chem ; 87(19): 10125-30, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26348131

RESUMO

A selective electrochemical calcium pump based on a fast diffusive calcium ionophore-based membrane is reported. An initially nonpolarized ionophore-based membrane allows one to establish a net calcium flux by applying a potential step function (i.e., 250 mV for 30 s). The resulting calcium flux is released into a microliter scale thin layer reservoir, and the resulting ion perturbation is monitored by either a potentiometric or a coulometric readout. This chemical perturbation in the thin layer thus acts as a titration agent that is precisely controlled by coulometry. A linear correlation between released and detected calcium is confirmed by the two different readout modes. Having demonstrated the efficiency of the calcium pump in background electrolyte solutions, a complexometric titration with known concentrations of EDTA in the thin layer sample was performed. With the potentiometric readout, titrations in the range of 0.25-0.75 mM gave a precision of 3%, whereas the coulometric readout gave a range of 0.02-0.12 mM and a precision of 2%. Improved precision is expected by better control of the thin layer geometry by microfabrication. The significance of this work is that the coupling of a selective calcium pump with a thin layer element can give rise to rapid and complete sample concentration changes and result in a promising platform for titrations either on the laboratory bench or for in situ measurements in environmental or diagnostic settings.

6.
Anal Chem ; 87(17): 8640-5, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26272001

RESUMO

While ion to electron transducing layers for the fabrication of potentiometric membrane electrodes for the detection of cations have been well established, similar progress for the sensing of anions has not yet been realized. We report for this reason on a novel approach for the development of all-solid-state anion selective electrodes using lipophilic multiwalled carbon nanotubes (f-MWCNTs) as the inner ion to electron transducing layer. This material can be solvent cast, as it conveniently dissolves in tetrahydrofuran (THF), an important advantage to develop uniform films without the need for using surfactants that might deteriorate the performance of the electrode. Solid contact sensors for carbonate, nitrate, nitrite, and dihydrogen phosphate are fabricated and characterized, and all exhibit comparable analytical characteristics to the inner liquid electrodes. For example, the carbonate sensor exhibits a Nernstian slope of 27.2 ± 0.8 mV·dec(-1), a LOD = 2.3 µM, a response time of 1 s, a linear range of four logarithmic units, and a medium-term stability of 0.04 mV·h(-1) is obtained in a pH 8.6 buffered solution. Water layer test, reversibility, and selectivity for chloride, nitrate, and hydroxide are also reported. The excellent properties of f-MWCNTs as a transducer are contrasted to the deficient performance of poly(3-octyl-thiophene) (POT) for carbonate detection. This is evidenced both with a significant drift in the potentiometric measures as well as a pronounced sensitivity to light (either sunlight or artificial light). This latter aspect may compromise its potential for environmental in situ measurements (night/day cycles). The concentration of carbonate is determined in a river sample (Arve river, Geneva) and compared to a reference method (automatic titrator with potentiometric pH detection). The results suggest that nanostructured materials such as f-MWCNTs are an attractive platform as a general ion-to-electron transducer for anion-selective electrodes.

7.
Anal Chem ; 86(22): 11387-95, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25315854

RESUMO

Water analysis is one of the greatest challenges in the field of environmental analysis. In particular, seawater analysis is often difficult because a large amount of NaCl may mask the determination of other ions, i.e., nutrients, halides, and carbonate species. We demonstrate here the use of thin-layer samples controlled by cyclic voltammetry to analyze water samples for chloride, bromide, and iodide. The fabrication of a microfluidic electrochemical cell based on a Ag/AgX wire (working electrode) inserted into a tubular Nafion membrane is described, which confines the sample solution layer to less than 15 µm. By increasing the applied potential, halide ions present in the thin-layer sample (X(-)) are electrodeposited on the working electrode as AgX, while their respective counterions are transported across the perm-selective membrane to an outer solution. Thin-layer cyclic voltammetry allows us to obtain separated peaks in mixed samples of these three halides, finding a linear relationship between the halide concentration and the corresponding peak area from about 10(-5) to 0.1 M for bromide and iodide and from 10(-4) to 0.6 M for chloride. This technique was successfully applied for the halide analysis in tap, mineral, and river water as well as seawater. The proposed methodology is absolute and potentially calibration-free, as evidenced by an observed 2.5% RSD cell to cell reproducibility and independence from the operating temperature.

8.
Anal Chem ; 86(13): 6307-14, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24871457

RESUMO

We present here for the first time an all-solid-state chronopotentiometric ion sensing system based on selective ionophores, specifically for the carbonate anion. A chronopotentiometric readout is attractive because it may allow one to obtain complementary information on the sample speciation compared to zero-current potentiometry and detect the sum of labile carbonate species instead of only ion activity. Ferrocene covalently attached to the PVC polymeric chain acts as an ion-to-electron transducer and provides the driving force to initiate the sensing process at the membrane-sample interface. The incorporation of a selective ionophore for carbonate allows one to determine this anion in a background electrolyte. Various inner electrolyte and all-solid-state-membrane configurations are explored, and localized carbonate depletion is only observed for systems that do not contain ion-exchanger additives. The square root of the transition times extracted from the inflection point of the chronopotentiograms as a function of carbonate specie concentration follows a linear relationship. The observed linear range is 0.03-0.35 mM in a pH range of 9.50-10.05. By applying the Sand equation, the diffusion coefficient of carbonate is calculated as (9.03 ± 0.91) 10(-6) cm(2) s(-1), which corresponds to the established value. The reproducibility of assessed carbonate is better than 1%. Additionally, carbonate is monitored during titrimetric analysis as a precursor to an in situ environmental determination. Based on these results, Fc-PVC membranes doped with ionophores may form the basis of a new family of passive/active all-solid-state ion selective electrodes interrogated by a current pulse.

9.
Anal Chem ; 85(13): 6208-12, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23731350

RESUMO

Potentiometric sensors that exhibit a non-Hofmeister selectivity sequence are normally designed by selective chemical recognition elements in the membrane. In other situations, when used as detectors in separation science, for example, membranes that respond equally to most ions are preferred. With so-called liquid membranes, a low selectivity is difficult to accomplish since these membranes are intrinsically responsive to lipophilic species. Instead, the high solubility of sample lipids in an ionophore-free sensing matrix results in a deterioration of the response. We explore here potentiometric sensors on the basis of ion-exchange membranes commonly used in fuel cell applications and electrodialysis, which have so far not found their way into the field of ion-selective electrodes. These membranes act as Donnan exclusion membranes as the ions are not stripped of their hydration shell as they interact with the membrane. Because of this, lipophilic ions are no longer preferred over hydrophilic ones, making them promising candidates for the detection of abundant ions in the presence of lipophilic ones or as detectors in separation science. Two types of cation-exchanger membranes and one anion-exchange membrane were characterized, and potentiometric measuring ranges were found to be Nernstian over a wide range down to about 10 µM concentrations. Depending on the specific membrane, lipophilic ions gave equal response to hydrophilic ones or were even somewhat discriminated. The medium and long-term stability and reproducibility of the electrode signals were found to be promising when evaluated in synthetic and whole blood samples.

10.
Anal Chem ; 84(23): 10165-9, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23140232

RESUMO

An electrochemical sensing protocol based on supported liquid ion-selective membranes for the direct detection of total alkalinity of a sample that contains a weak base such as Tris (pK(a) = 8.2) is presented here for the first time. Alkalinity is determined by imposing a defined flux of hydrogen ions from the membrane to the sample with an applied current. The transition time at which the base species at the membrane-sample interface depletes owing to diffusion limitation is related to sample alkalinity in this chronopotentiometric detection mode. The same membrane is shown to detect pH (by zero current potentiometry) and acidity and alkalinity (by chronopotentiometry at different current polarity). This principle may become a welcome tool for the in situ determination of these characteristics in complex samples such as natural waters.

11.
Anal Chem ; 84(20): 8813-21, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22994137

RESUMO

Ion-selective membranes based on porous polypropylene membranes doped with an ionophore and a lipophilic cation-exchanger are used here in a new tandem measurement mode that combines dynamic electrochemistry and zero current potentiometry into a single protocol. Open circuit potential measurements yield near-nernstian response slopes in complete analogy to established ion-selective electrode methodology. Such measurements are well established to give direct information on the so-called free ion concentration (strictly, activity) in the sample. The same membrane is here also operated in a constant current mode, in which the localized ion depletion at a transition time is visualized by chronopotentiometry. This dynamic electrochemistry methodology gives information on the labile ion concentration in the sample. The sequential protocol is established on potassium and calcium ion-selective membranes. An increase of the ionophore concentration in the membrane to 180 mM makes it possible to determine calcium concentrations as high as 3 mM by chronopotentiometry, thereby making it possible to directly detect total calcium in undiluted blood samples. Recovery times after current perturbation depend on the current amplitude but can be kept to below 1 min for the polypropylene based ion-selective membranes studied here. Plasticized PVC as membrane material is less suited for this protocol, especially when the measurement at elevated concentrations is desired. An analysis of current amplitudes, transition times, and concentrations shows that the data are described by the Sand equation and that migration effects are insignificant. A numerical model describes the experimental findings with good agreement and gives guidance on the required selectivity in order to observe a well-resolved transition time and on the expected errors due to insufficient selectivity. The simulations suggest that the methodology compares well to that of open circuit potentiometry, despite giving complementary information about the sample. The tandem methodology is demonstrated in a titration of calcium with nitrilotriacetic acid (NTA) and in the direct detection of calcium in undiluted heparinized and citrated blood.


Assuntos
Cálcio/análise , Eletrodos Seletivos de Íons , Íons/análise , Potássio/análise , Potenciometria/instrumentação , Cálcio/sangue , Desenho de Equipamento , Humanos , Íons/sangue , Membranas Artificiais , Polipropilenos/química , Potássio/sangue , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...