Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(14): 6160-6174, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38976696

RESUMO

In this study, we present a multiscale method to simulate the propagation of Frenkel singlet excitons in organic semiconductors (OSCs). The approach uses neural network models to train a Frenkel-type Hamiltonian and its gradient, obtained by the long-range correction version of density functional tight-binding with self-consistent charges. Our models accurately predict site energies, excitonic couplings, and corresponding gradients, essential for the nonadiabatic molecular dynamics simulations. Combined with the fewest switches surface hopping algorithm, the method was applied to four representative OSCs: anthracene, pentacene, perylenediimide, and diindenoperylene. The simulated exciton diffusion constants align well with experimental and reported theoretical values and offer valuable insights into exciton dynamics in OSCs.

2.
J Chem Theory Comput ; 18(3): 1264-1274, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35179894

RESUMO

The trajectory surface hopping (TSH) method is nowadays widely applied to study the charge/exciton transport process in organic semiconductors (OSCs). In the present study, we systematically examine the performance of two approximations in the fewest switched surface hopping (FSSH) simulations for charge transport (CT) in several representative OSCs. These approximations include (i) the substitution of the nuclear velocity scaling along the nonadiabatic coupling vector (NCV) by rescaling the hopping probability with the Boltzmann factor (Boltzmann correction (BC)) and (ii) a phenomenological approach to treat the quantum feedback from the electronic system to the nuclear system (implicit charge relaxation (IR)) in the OSCs. We find that charge mobilities computed by FSSH-BC-IR are in very good agreement with the mobilities obtained by standard FSSH simulations with explicit charge relaxation (FSSH-ER), however, at reduced computational cost. A key parameter determining the charge carrier mobility is the reorganization energy, which is sensitively dependent on DFT functionals applied. By employing the IR approximation, the FSSH method allows systematic investigation of the effect of the reorganization energies obtained by different DFT functionals like B3LYP or ωB97XD on CT in OSCs. In comparison to the experiments, FSSH-BC-IR using ωB97XD reorganization energy underestimates mobilities in the low-coupling regime, which may indicate the lack of nuclear quantum effects (e.g., zero point energy (ZPE)) in the simulations. The mobilities obtained by FSSH-BC-IR using the B3LYP reorganization energy agree well with experimental values in 3 orders of magnitude. The accidental agreement may be the consequence of the underestimation of the reorganization energy by the B3LYP functional, which compensates for the neglect of nuclear ZPE in the simulations.

3.
Chem Sci ; 12(12): 4477-4483, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-34168750

RESUMO

Charge carrier mobility is an important figure of merit to evaluate organic semiconductor (OSC) materials. In aggregated OSCs, this quantity is determined by inter-chromophoric electronic and vibrational coupling. These key parameters sensitively depend on structural properties, including the density of defects. We have employed a new type of crystalline assembly strategy to engineer the arrangement of the OSC pentacene in a structure not realized as crystals to date. Our approach is based on metal-organic frameworks (MOFs), in which suitably substituted pentacenes act as ditopic linkers and assemble into highly ordered π-stacks with long-range order. Layer-by-layer fabrication of the MOF yields arrays of electronically coupled pentacene chains, running parallel to the substrate surface. Detailed photophysical studies reveal strong, anisotropic inter-pentacene electronic coupling, leading to efficient charge delocalization. Despite a high degree of structural order and pronounced dispersion of the 1D-bands for the static arrangement, our experimental results demonstrate hopping-like charge transport with an activation energy of 64 meV dominating the band transport over a wide range of temperatures. A thorough combined quantum mechanical and molecular dynamics investigation identifies frustrated localized rotations of the pentacene cores as the reason for the breakdown of band transport and paves the way for a crystal engineering strategy of molecular OSCs that independently varies the arrangement of the molecular cores and their vibrational degrees of freedom.

4.
Chemistry ; 26(55): 12596-12605, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32368815

RESUMO

Previously it was demonstrated that triptycene end-capping can be used as a crystal engineering strategy to direct the packing of quinoxalinophenanthrophenazines (QPPs) towards cofacially stacked π dimers with large molecular overlap resulting in high charge transfer integrals. Remarkably, this packing motif was formed under different crystallization conditions and with a variety of derivatives bearing additional functional groups or aromatic substituents. Benzothienobenzothiophene (BTBT) and its derivatives are known as some of the best performing compounds for organic field-effect transistors. Here, the triptycene end-capping concept is introduced to this class of compounds and polymorphic crystal structures are investigated to evaluate the potential of triptycene end-caps as synthons for crystal engineering.

5.
Chemistry ; 26(50): 11634-11642, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32459010

RESUMO

Five di- and tetracyano-substituted pyrene-fused pyrazaacenes were synthesized and studied as potential electron acceptors in the solid state. Single crystals of all compounds were grown and the crystal packing studied by DFT calculations (transfer integrals and reorganization energies) to get insight into possible use for semiconducting charge transport.

6.
J Phys Chem A ; 122(19): 4647-4653, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29698601

RESUMO

We apply a model for analyzing the importance of conformational charge flux to 11 molecules with the R-(CH2) n-R structure (R = Cl, F, OH, SH, COOH, CONH2, and NH2 and n = 4-6). Atomic charges were obtained by fitting to results from density functional theory calculations using the HLY procedure, and their geometry dependence is decomposed into contributions from changes in bond lengths, bond angles, and torsional angles. The torsional degrees of freedom are the main contribution to the conformational dependence of atomic charges and molecular dipole moments, but indirect effects due to changes in bond distances and angles account for ∼15% of the variations. While the magnitude of charge flux and geometry effects have been found to be independent of the number of internal degrees of freedom, the nature of the R- group has a moderate influence. The indirect effects are comparable for all of the R-groups and are approximately one-half the magnitude of the corresponding effects in peptide models. However, the magnitudes are different, yet the relative importance of geometry and charge flux effects are completely similar to those of the peptide models, which suggests that modeling the charge flux effects for changes in bond lengths, bond angles, and torsional angles should be considered for developing improved force fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA