Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Rep (Amst) ; 30: e00641, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34189062

RESUMO

Tuberculosis (TB) is a sizable public health threat in the world. This study was conducted to determine the differential protein composition between susceptible and MDRTB strains. Tuberculosis proteins were extracted by Triton™ X-114 and ammonium sulfate. Two-dimensional gel electrophoresis protein spots were selected for identification by mass spectrometry and mRNA expression levels were measured by real- time PCR. 2DE-Western blot and T cell epitope prediction for identified proteins were made by the IEDB server. The result shows at least six protein spots (Rv0147, Rv3597c, Rv0379, Rv3699, Rv1392 and Rv0443) were differentially expressed in MDRTB isolates. However, difference in mRNA gene expression was not found in the six mRNA genes. 2DE-Western blot procedures indicated strong reaction against MDRTB proteins corresponds to 13, 16 and 55 kDa areas that might be used as new diagnostic tools. In conclusion, these MDRTB proteins identified in this study could be reliable TB diagnostic candidates or therapeutic targets.

2.
Infect Drug Resist ; 12: 3425-3435, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31807033

RESUMO

BACKGROUND: Nowadays, tuberculosis (TB) is one of the top ten leading causes of mortality worldwide. The emergence of multidrug-resistant (MDR) - and extensively drug-resistant (XDR) - Mycobacterium tuberculosis (M. tuberculosis) is identified as one of the most challenging threats to TB control. Thus, new and safe nano-drugs are urgently required for the elimination of TB. The aim of this study was to investigate the anti-bacterial effects of Ag, ZnO, and Ag-ZnO nanoparticles (NPs) on MDR- and XDR-M. tuberculosis. MATERIALS AND METHODS: In this study, Ag, ZnO, and Ag-ZnO NPs were synthesized by the chemical reduction and chemical deposition methods. NPs were characterized using ultraviolet-visible spectroscopy, dynamic light scattering, and transmission electron microscopy. Then, various dilutions of NPs were prepared and their minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined against M. tuberculosis strains using the broth microdilution and agar microdilution methods. Finally, MTT test and cell culture assay were performed. RESULTS: The effects of concentrations of 1-128 µg/mL Ag NPs, ZnO NPs, 2Ag: 8ZnO, 8Ag:2ZnO, 3Ag: 7ZnO, 7Ag:3ZnO, and 5Ag:5ZnO on M. tuberculosis strains were investigated. MIC results showed the inhibitory effect of 1 µg/mL of all NPs against XDR-M. tuberculosis. In addition, the concentrations of 4 µg/mL Ag, 8 µg/mL 5Ag:5ZnO, 8 µg/mL 7Ag:3ZnO, 32 µg/mL 3Ag:7ZnO, 16 µg/mL 8Ag:2ZnO, and 64 µg/mL 2Ag:8ZnO inhibited MDR-M. tuberculosis growth. However, MBC results indicated the inability of Ag, ZnO and Ag-ZnO NPs, either in combination or alone, to kill MDR- or XDR-M. tuberculosis. CONCLUSION: To the best of our knowledge, this is the first study to evaluate the effects of Ag and ZnO NPs against MDR and XDR strains of M. tuberculosis. According to the results, Ag and ZnO NPs showed bacteriostatic effects against drug-resistant strains of M. tuberculosis. Therefore, these NPs may be considered as promising anti-mycobacterial nano-drugs. However, further studies are required to affirm the bactericidal effects of these NPs against TB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...