Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896373

RESUMO

Prosthetic reconstruction can serve as a feasible alternative, delivering both functional and aesthetic benefits to individuals with hand and finger injuries, frequent causes of emergency room visits. Implant-related infections pose significant challenges in arthroplasty and osteosynthesis procedures, contributing to surgical failures. As a potential solution to this challenge, this study developed a new class of silver (Ag)-doped chitosan (CS) coatings via electrophoretic deposition (EPD) on osseointegrated prostheses for infection therapy. These coatings were successfully applied to additively manufactured Ti6Al4V ELI samples. In the initial phase, the feasibility of the composite coating was assessed using the Thermogravimetric Analysis (TGA) and Attenuated Total Reflection (ATR) techniques. The optimized structures exhibited impressive water uptake in the range of 300-360%. Codeposition with an antibacterial agent proved effective, and scanning electron microscopy (SEM) was used to examine the coating morphology. Biologically, CS coatings demonstrated cytocompatibility when in direct contact with a fibroblast cell line (L929) after 72 h. When exposed to the Staphylococcus epidermidis strain (ATCC 12228), these coatings inhibited bacterial growth and biofilm formation within 24 h. These findings underscore the significant potential of this approach for various applications, including endoprostheses like hip implants, internal medical devices, and transcutaneous prostheses such as osseointegrated limb prosthetics for upper and lower extremities.

2.
J Mater Sci Mater Med ; 30(4): 40, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30919137

RESUMO

Clobetasol propionate (CP) is a high-potency corticosteroid, representing the standard of care for the symptomatic treatment of different skin disorders as well as oral mucosal diseases. Several topical delivery systems are available for treating oral lesions, but the ideal one is still lacking. In this work, we propose a novel class of chitosan (CS) patches, loaded with CP, for the topical treatment of inflammatory chronic oral diseases. Chitosan patches have been fabricated via electrophoretic deposition (EPD), by using a one-pot approach in order to load controlled quantity of CP. Optimized structures showed a water uptake in the range of 200-360% and mechanical properties that allow the design of flexible patches in wet state (E = 0.6 MPa and σbr = 0.55 MPa). Ultraviolet-visible (UV-Vis) spectroscopy was used for the evaluation of both loading and release profile of CP in CS patches. The CP loading has been tuned by adjusting CP concentration in deposition bath-in the range 0.002-0.12 mg cm-2-while releasing curves show an in vitro CP burst of about 80% in the first two hours. Overall, the obtained properties paved the way for the application of this new class of patches for the local oral release of CP.


Assuntos
Quitosana/química , Quitosana/farmacocinética , Clobetasol/administração & dosagem , Sistemas de Liberação de Medicamentos , Eletroforese , Adesivo Transdérmico , Administração Tópica , Clobetasol/farmacocinética , Preparações de Ação Retardada , Portadores de Fármacos , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Eletroforese/métodos , Desenho de Equipamento/métodos , Etanol/farmacocinética , Humanos , Pele/efeitos dos fármacos , Pele/metabolismo , Dermatopatias/tratamento farmacológico , Água/metabolismo , Molhabilidade
3.
J Biomed Mater Res A ; 107(7): 1455-1465, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30786159

RESUMO

One of the main challenges in the design of scaffolds for cortical bone regeneration is mimicking the highly oriented, hierarchical structure of the native tissue in an efficient, simple, and consistent way. As a possible solution to this challenge, positive replica based on electrophoretic deposition (EPD) was here evaluated as a technique to produce organic/inorganic scaffolds with oriented micro-porosities mimicking Haversian canals diameter and spacing. Two different sizes of 45S5 bioactive glass (BG) powders were chosen as inclusions and loaded in a chitosan matrix via EPD on micro-patterned cathodes. Self-standing chitosan scaffolds, with a homogeneous dispersion of BG particles and regularly-oriented micro-channels (ϕ = 380 ± 50 µm, inter-channel spacing = 600 ± 40 µm), were obtained. In vitro analysis in simulated body fluid (SBF) revealed the ability to induce a deposition of a homogenous layer of hydroxyapatite (HA), with Ca/P nucleation reactions appearing kinetically favored by smaller BG particles. Cell interaction with hybrid scaffolds was evaluated in vitro with bone osteosarcoma cells (SAOS-2). The osteoconductive potential of EPD structures was assessed by evaluating cells proliferation, viability and scaffold colonization. Results indicate that EPD is a simple yet extremely effective technique to prepare composite micro-patterned structures and can represent a platform for the development of a new generation of bone scaffolds. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2019.


Assuntos
Cerâmica/química , Quitosana/química , Vidro/química , Alicerces Teciduais/química , Líquidos Corporais/química , Linhagem Celular Tumoral , Sobrevivência Celular , DNA/metabolismo , Eletroforese , Humanos , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...