Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Res Neurobiol ; 4: 100074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36699152

RESUMO

Three decades following the introduction of the first Rb knockout (KO) mouse model, the role of this critical protein in regulating brain development during embryogenesis and beyond remains a major scientific interest. Rb is a tumor suppressor gene known as the master regulator of the G1/S checkpoint and control of cell cycle progression in stem and progenitor cells, but also their differentiated progeny. Here, we review the recent literature about the various Rb conditional Knockout (cKO) and inducible Knockout (iKO) models studied thus far, highlighting how findings should always be interpreted in light of the model and context under inquiry especially when studying the role of Rb in neuronal survival. There is indeed evidence of age-specific, cell type-specific and region-specific effects following Rb KO in the embryonic and the adult mouse brain. In terms of modeling neurodegenerative processes in human diseases, we discuss cell cycle re-entry (CCE) as a candidate mechanism underlying the increased vulnerability of Rb-deficient neurons to cell death. Notably, mouse models may limit the extent to which CCE due to Rb inactivation can mimic the pathological course of these disorders, such as Alzheimer's disease. These remarks ought to be considered in future research when studying the consequences of Rb inactivation on neuronal generation and survival in rodents and their corresponding clinical significance in humans.

2.
Cell Rep ; 41(5): 111578, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323247

RESUMO

Long-term maintenance of the adult neurogenic niche depends on proper regulation of entry and exit from quiescence. Neural stem cell (NSC) transition from quiescence to activation is a complex process requiring precise cell-cycle control coordinated with transcriptional and morphological changes. How NSC fate transitions in coordination with the cell-cycle machinery remains poorly understood. Here we show that the Rb/E2F axis functions by linking the cell-cycle machinery to pivotal regulators of NSC fate. Deletion of Rb family proteins results in activation of NSCs, inducing a transcriptomic transition toward activation. Deletion of their target activator E2Fs1/3 results in intractable quiescence and cessation of neurogenesis. We show that the Rb/E2F axis mediates these fate transitions through regulation of factors essential for NSC function, including REST and ASCL1. Thus, the Rb/E2F axis is an important regulator of NSC fate, coordinating cell-cycle control with NSC activation and quiescence fate transitions.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Células-Tronco Neurais/metabolismo , Células-Tronco Adultas/metabolismo , Neurogênese/fisiologia , Divisão Celular , Ciclo Celular , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
3.
Aging Brain ; 2: 100041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36908894

RESUMO

Cell cycle proteins play essential roles in regulating embryonic and adult neurogenesis in the mammalian brain. A key example is the Retinoblastoma protein (Rb) whose loss disrupts the whole neurogenic program during brain development, but only results in increased progenitor proliferation in the adult subventricular zone (SVZ) and compromised long-term neuronal survival in the adult olfactory bulb (OB). Whether this holds true of neurogenesis in the aged brain remains unknown. In this study, we find no evidence of irregular proliferation or early commitment defects in the mid-aged (12-month-old) and old-aged (20-month-old) SVZ following tamoxifen-inducible Rb knockout (Rb iKO) in mice. However, we highlight a striking defect in early maturation of Rb-deficient migrating neuroblasts along the rostral migratory stream (RMS), followed by massive decline in neuronal generation inside the aged OB. In the absence of Rb, we also show evidence of incomplete cell cycle re-entry (CCE) along with DNA damage in the young OB, while we find a similar trend towards CCE but no clear signs of DNA damage or neurodegenerative signatures (pTau or Synuclein accumulation) in the aged OB. However, such phenotype could be masked by the severe maturation defect reported above in addition to the natural decline in adult neurogenesis with age. Overall, we show that Rb is required to prevent CCE and DNA damage in adult-born OB neurons, hence maintain neuronal survival. Moreover, while loss of Rb alone is insufficient to trigger seeding of neurotoxic species, this study reveals age-dependent non-monotonic dynamics in regulating neurogenesis by Rb.

4.
Cells ; 9(8)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796515

RESUMO

CLN3 disease is a fatal neurodegenerative disorder affecting children. Hallmarks include brain atrophy, accelerated neuronal apoptosis, and ceramide elevation. Treatment regimens are supportive, highlighting the importance of novel, disease-modifying drugs. Flupirtine and its new allyl carbamate derivative (compound 6) confer neuroprotective effects in CLN3-deficient cells. This study lays the groundwork for investigating beneficial effects in Cln3Δex7/8 mice. WT/Cln3Δex7/8 mice received flupirtine/compound 6/vehicle for 14 weeks. Short-term effect of flupirtine or compound 6 was tested using a battery of behavioral testing. For flupirtine, gene expression profiles, astrogliosis, and neuronal cell counts were determined. Flupirtine improved neurobehavioral parameters in open field, pole climbing, and Morris water maze tests in Cln3Δex7/8 mice. Several anti-apoptotic markers and ceramide synthesis/degradation enzymes expression was dysregulated in Cln3Δex7/8 mice. Flupirtine reduced astrogliosis in hippocampus and motor cortex of male and female Cln3Δex7/8 mice. Flupirtine increased neuronal cell counts in male mice. The newly synthesized compound 6 showed promising results in open field and pole climbing. In conclusion, flupirtine improved behavioral, neuropathological and biochemical parameters in Cln3Δex7/8 mice, paving the way for potential therapies for CLN3 disease.


Assuntos
Aminopiridinas/farmacologia , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Apoptose/efeitos dos fármacos , Ceramidas/metabolismo , Corticosterona/metabolismo , Feminino , Gliose/metabolismo , Imunoensaio , Imuno-Histoquímica , Aprendizagem/efeitos dos fármacos , Masculino , Glicoproteínas de Membrana/genética , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/genética , Reação em Cadeia da Polimerase em Tempo Real
5.
Methods Mol Biol ; 2045: 187-199, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30888667

RESUMO

The use of inducible transgenic Nestin-CreERT2 mice has proved to be an essential research tool for gene targeting and studying the molecular pathways implicated in adult neurogenesis, namely, inside the adult subgranular zone (SGZ) of the dentate gyrus and the adult subventricular zone (SVZ) lining the lateral ventricles. Several lines of Nestin-CreER-expressing mice were generated and used in adult neurogenesis research in the past two decades; however, their suitability for studying neurogenesis in aged mice remains elusive. Here, we assessed the efficiency of Cre-loxP genetic recombination in the aging SVZ using the Nestin-CreERT2/Rosa26YFP line designed by Lagace et al. (J Neurosci 27(46):12623-12629, 2007). This analysis was performed in 12-month-old (middle-aged) mice and 20-month-old (old) mice compared to 2-month-old (young adult) mice. To evaluate successful recombination, our approach relies on the histological assessment of Cre mRNA level of expression and the YFP reporter gene's expression inside the aging SVZ by combining in situ hybridization and immunohistochemistry. Using co-immunolabeling, this approach also provides the advantage of estimating the percentage of recombined progeny [(GFP+Nestin+)/Nestin+] and the rate of cell proliferation [(GFP+Ki67+)/GFP+] inside the aging SVZ niche.


Assuntos
Imunofluorescência/métodos , Ventrículos Laterais/metabolismo , Nestina/genética , Células-Tronco Neurais/citologia , Neurogênese , Neurônios/citologia , Recombinação Genética , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Envelhecimento , Animais , Linhagem da Célula , DNA Complementar/genética , Genes Reporter/genética , Hibridização In Situ , Integrases/genética , Integrases/metabolismo , Ventrículos Laterais/fisiologia , Proteínas Luminescentes/análise , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Oligorribonucleotídeos/genética , Recombinação Genética/efeitos dos fármacos , Fluxo de Trabalho
6.
Neuropharmacology ; 145(Pt B): 177-198, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30267729

RESUMO

Traumatic brain injury (TBI) has been recognized as one of the major public health issues that leads to devastating neurological disability. As a consequence of primary and secondary injury phases, neuronal loss following brain trauma leads to pathophysiological alterations on the molecular and cellular levels that severely impact the neuropsycho-behavioral and motor outcomes. Thus, to mitigate the neuropathological sequelae post-TBI such as cerebral edema, inflammation and neural degeneration, several neurotherapeutic options have been investigated including drug intervention, stem cell use and combinational therapies. These treatments aim to ameliorate cellular degeneration, motor decline, cognitive and behavioral deficits. Recently, the use of neural stem cells (NSCs) coupled with selective drug therapy has emerged as an alternative treatment option for neural regeneration and behavioral rehabilitation post-neural injury. Given their neuroprotective abilities, NSC-based neurotherapy has been widely investigated and well-reported in numerous disease models, notably in trauma studies. In this review, we will elaborate on current updates in cell replacement therapy in the area of neurotrauma. In addition, we will discuss novel combination drug therapy treatments that have been investigated in conjunction with stem cells to overcome the limitations associated with stem cell transplantation. Understanding the regenerative capacities of stem cell and drug combination therapy will help improve functional recovery and brain repair post-TBI. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".


Assuntos
Lesões Encefálicas Traumáticas/terapia , Fármacos Neuroprotetores/uso terapêutico , Transplante de Células-Tronco , Animais , Terapia Combinada , Humanos , Fármacos Neuroprotetores/farmacologia
7.
Front Neurosci ; 12: 144, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593485

RESUMO

Adult neurogenesis (AN) is an ongoing developmental process that generates newborn neurons in the olfactory bulb (OB) and the hippocampus (Hi) throughout life and significantly contributes to brain plasticity. Adult neural stem and progenitor cells (aNSPCs) are relatively limited in number and fate and are spatially restricted to the subventricular zone (SVZ) and the subgranular zone (SGZ). During AN, the distinct roles played by cell cycle proteins extend beyond cell cycle control and constitute key regulatory mechanisms involved in neuronal maturation and survival. Importantly, aberrant cell cycle re-entry (CCE) in post-mitotic neurons has been strongly linked to the abnormal pathophysiology in rodent models of neurodegenerative diseases with potential implications on the etiology and progression of such diseases in humans. Here, we present an overview of AN in the SVZ-OB and olfactory epithelium (OE) in mice and humans followed by a comprehensive update of the distinct roles played by cell cycle proteins including major tumors suppressor genes in various steps during neurogenesis. We also discuss accumulating evidence underlining a strong link between abnormal cell cycle control, olfactory dysfunction and neurodegeneration in the adult and aging brain. We emphasize that: (1) CCE in post-mitotic neurons due to loss of cell cycle suppression and/or age-related insults as well as DNA damage can anticipate the development of neurodegenerative lesions and protein aggregates, (2) the age-related decline in SVZ and OE neurogenesis is associated with compensatory pro-survival mechanisms in the aging OB which are interestingly similar to those detected in Alzheimer's disease and Parkinson's disease in humans, and (3) the OB represents a well suitable model to study the early manifestation of age-related defects that may eventually progress into the formation of neurodegenerative lesions and, possibly, spread to the rest of the brain. Such findings may provide a novel approach to the modeling of neurodegenerative diseases in humans from early detection to progression and treatment as well.

8.
Methods Mol Biol ; 1462: 689-710, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27604746

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of death and disabilities worldwide. It affects approximately 1.5 million people each year and is associated with severe post-TBI symptoms such as sensory and motor deficits. Several neuro-therapeutic approaches ranging from cell therapy interventions such as the use of neural stem cells (NSCs) to drug-based therapies have been proposed for TBI management. Successful cell-based therapies are tightly dependent on reproducible preclinical animal models to ensure safety and optimal therapeutic benefits. In this chapter, we describe the isolation of NSCs from neonatal mouse brain using the neurosphere assay in culture. Subsequently, dissociated neurosphere-derived cells are used for transplantation into the ipsilateral cortex of a controlled cortical impact (CCI) TBI model in C57BL/6 mice. Following intra-cardiac perfusion and brain removal, the success of NSC transplantation is then evaluated using immunofluorescence in order to assess neurogenesis along with gliosis in the ipsilateral coronal brain sections. Behavioral tests including rotarod and pole climbing are conducted to evaluate the motor activity post-treatment intervention.


Assuntos
Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/terapia , Células-Tronco Neurais/citologia , Transplante de Células-Tronco , Animais , Comportamento Animal , Biomarcadores , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/fisiopatologia , Técnicas de Cultura de Células , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Imunofluorescência , Camundongos , Células-Tronco Neurais/metabolismo , Recuperação de Função Fisiológica , Teste de Desempenho do Rota-Rod , Resultado do Tratamento
9.
Front Mol Neurosci ; 9: 81, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27667971

RESUMO

The Retinoblastoma protein, Rb, was shown to regulate distinct aspects of neurogenesis in the embryonic and adult brain besides its primary role in cell cycle control. It is still unknown, however, whether Rb is required for tissue morphogenesis and the establishment of synaptic connections between adjacent tissues during development. We have investigated here the role of Rb during development of the olfactory system (OS), which heavily relies on reciprocal interactions between the olfactory epithelium (OE) and the olfactory bulb (OB). We show that mice carrying a telencephalic-specific deletion of Rb display several neurogenic defects in the OS during late development. In the OE, loss of Rb leads to ectopic proliferation of late-born progenitors (Tuj-1+), abnormal radial migration and terminal maturation of olfactory sensory neurons (OSNs). In the OB, deletion of Rb causes severe lamination defects with loss of clear boundaries between distinct layers. Importantly, starting around E15.5 when OB glomerulogenesis is initiated, many OSNs axons that project along the olfactory nerve layer (ONL) fail to properly innervate the nascent bulb, thus resulting in partial loss of connectivity between OE-OB and gradual neuronal degeneration in both tissues peaking at birth. This deficiency correlates with deregulated expressions of two key chemo-repellant molecules, Robo2/Slit1 and Nrp2/Sema3F that control the formation of dorsal-ventral topographic map of OSNs connections with OB glomeruli. This study highlights a critical requirement for Rb during neurogenesis and the establishment of proper synaptic connections inside the OS during development.

10.
Hippocampus ; 26(11): 1379-1392, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27325572

RESUMO

In mammals, hippocampal dentate gyrus granule cells (DGCs) constitute a particular neuronal population produced both during embryogenesis and adult life, and play key roles in neural plasticity and memory. However, the molecular mechanisms regulating neurogenesis in the dentate lineage throughout development and adulthood are still not well understood. The Retinoblastoma protein (RB), a transcriptional repressor primarily involved in cell cycle control and cell death, plays crucial roles during cortical development but its function in the formation and maintenance of DGCs remains unknown. Here, we show that loss of RB during embryogenesis induces massive ectopic proliferation and delayed cell cycle exit of young DGCs specifically at late developmental stages but without affecting stem cells. This phenotype was partially counterbalanced by increased cell death. Similarly, during adulthood, loss of RB causes ectopic proliferation of newborn DGCs and dramatically impairs their survival. These results demonstrate a crucial role for RB in the generation and the survival of DGCs in the embryonic and the adult brain. © 2016 Wiley Periodicals, Inc.


Assuntos
Giro Denteado/citologia , Giro Denteado/embriologia , Neurogênese/genética , Neurônios/fisiologia , Proteína do Retinoblastoma/metabolismo , Células-Tronco/fisiologia , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F3/genética , Fator de Transcrição E2F3/metabolismo , Embrião de Mamíferos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina/genética , Nestina/metabolismo , Proteína do Retinoblastoma/genética , Fatores de Transcrição SOXB1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA