Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38255153

RESUMO

Chronic thromboembolic pulmonary disease results from the incomplete resolution of thrombi, leading to fibrotic obstructions. These vascular obstructions and additional microvasculopathy may lead to chronic thromboembolic pulmonary hypertension (CTEPH) with increased pulmonary arterial pressure and pulmonary vascular resistance, which, if left untreated, can lead to right heart failure and death. The pathobiology of CTEPH has been challenging to unravel due to its rarity, possible interference of results with anticoagulation, difficulty in selecting the most relevant study time point in relation to presentation with acute pulmonary embolism (PE), and lack of animal models. In this article, we review the most relevant multifaceted cross-talking pathogenic mechanisms and advances in understanding the pathobiology in CTEPH, as well as its challenges and future direction. There appears to be a genetic background affecting the relevant pathological pathways. This includes genetic associations with dysfibrinogenemia resulting in fibrinolysis resistance, defective angiogenesis affecting thrombus resolution, and inflammatory mediators driving chronic inflammation in CTEPH. However, these are not necessarily specific to CTEPH and some of the pathways are also described in acute PE or deep vein thrombosis. In addition, there is a complex interplay between angiogenic and inflammatory mediators driving thrombus non-resolution, endothelial dysfunction, and vascular remodeling. Furthermore, there are data to suggest that infection, the microbiome, circulating microparticles, and the plasma metabolome are contributing to the pathobiology of CTEPH.

2.
Eur Respir J ; 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35144988

RESUMO

BACKGROUND: There is an emerging understanding that coronavirus disease 2019 (COVID-19) is associated with increased incidence of pneumomediastinum. We aimed to determine its incidence among patients hospitalised with COVID-19 in the United Kingdom and describe factors associated with outcome. METHODS: A structured survey of pneumomediastinum and its incidence was conducted from September 2020 to February 2021. United Kingdom-wide participation was solicited via respiratory research networks. Identified patients had SARS-CoV-2 infection and radiologically proven pneumomediastinum. The primary outcomes were to determine incidence of pneumomediastinum in COVID-19 and to investigate risk factors associated with patient mortality. RESULTS: 377 cases of pneumomediastinum in COVID-19 were identified from 58 484 inpatients with COVID-19 at 53 hospitals during the study period, giving an incidence of 0.64%. Overall 120-day mortality in COVID-19 pneumomediastinum was 195/377 (51.7%). Pneumomediastinum in COVID-19 was associated with high rates of mechanical ventilation. 172/377 patients (45.6%) were mechanically ventilated at the point of diagnosis. Mechanical ventilation was the most important predictor of mortality in COVID-19 pneumomediastinum at the time of diagnosis and thereafter (p<0.001) along with increasing age (p<0.01) and diabetes mellitus (p=0.08). Switching patients from continuous positive airways pressure support to oxygen or high flow nasal oxygen after the diagnosis of pneumomediastinum was not associated with difference in mortality. CONCLUSIONS: Pneumomediastinum appears to be a marker of severe COVID-19 pneumonitis. The majority of patients in whom pneumomediastinum was identified had not been mechanically ventilated at the point of diagnosis.

3.
JAMA ; 327(6): 546-558, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35072713

RESUMO

Importance: Continuous positive airway pressure (CPAP) and high-flow nasal oxygen (HFNO) have been recommended for acute hypoxemic respiratory failure in patients with COVID-19. Uncertainty exists regarding the effectiveness and safety of these noninvasive respiratory strategies. Objective: To determine whether either CPAP or HFNO, compared with conventional oxygen therapy, improves clinical outcomes in hospitalized patients with COVID-19-related acute hypoxemic respiratory failure. Design, Setting, and Participants: A parallel group, adaptive, randomized clinical trial of 1273 hospitalized adults with COVID-19-related acute hypoxemic respiratory failure. The trial was conducted between April 6, 2020, and May 3, 2021, across 48 acute care hospitals in the UK and Jersey. Final follow-up occurred on June 20, 2021. Interventions: Adult patients were randomized to receive CPAP (n = 380), HFNO (n = 418), or conventional oxygen therapy (n = 475). Main Outcomes and Measures: The primary outcome was a composite of tracheal intubation or mortality within 30 days. Results: The trial was stopped prematurely due to declining COVID-19 case numbers in the UK and the end of the funded recruitment period. Of the 1273 randomized patients (mean age, 57.4 [95% CI, 56.7 to 58.1] years; 66% male; 65% White race), primary outcome data were available for 1260. Crossover between interventions occurred in 17.1% of participants (15.3% in the CPAP group, 11.5% in the HFNO group, and 23.6% in the conventional oxygen therapy group). The requirement for tracheal intubation or mortality within 30 days was significantly lower with CPAP (36.3%; 137 of 377 participants) vs conventional oxygen therapy (44.4%; 158 of 356 participants) (absolute difference, -8% [95% CI, -15% to -1%], P = .03), but was not significantly different with HFNO (44.3%; 184 of 415 participants) vs conventional oxygen therapy (45.1%; 166 of 368 participants) (absolute difference, -1% [95% CI, -8% to 6%], P = .83). Adverse events occurred in 34.2% (130/380) of participants in the CPAP group, 20.6% (86/418) in the HFNO group, and 13.9% (66/475) in the conventional oxygen therapy group. Conclusions and Relevance: Among patients with acute hypoxemic respiratory failure due to COVID-19, an initial strategy of CPAP significantly reduced the risk of tracheal intubation or mortality compared with conventional oxygen therapy, but there was no significant difference between an initial strategy of HFNO compared with conventional oxygen therapy. The study may have been underpowered for the comparison of HFNO vs conventional oxygen therapy, and early study termination and crossover among the groups should be considered when interpreting the findings. Trial Registration: isrctn.org Identifier: ISRCTN16912075.


Assuntos
COVID-19/complicações , Pressão Positiva Contínua nas Vias Aéreas , Intubação Intratraqueal , Ventilação não Invasiva/métodos , Oxigenoterapia/métodos , Insuficiência Respiratória/terapia , Adulto , COVID-19/mortalidade , Cânula , Feminino , Mortalidade Hospitalar , Humanos , Intubação Intratraqueal/estatística & dados numéricos , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Insuficiência Respiratória/etiologia
4.
BMJ Open ; 12(12): e054469, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36600417

RESUMO

OBJECTIVE: Prospectively validate prognostication scores, SOARS and 4C Mortality Score, derived from the COVID-19 first wave, for mortality and safe early discharge in the evolving pandemic with SARS-CoV-2 variants (B.1.1.7 replacing D614) and healthcare responses altering patient demographic and mortality. DESIGN: Protocol-based prospective observational cohort study. SETTING: Single site PREDICT and multisite ISARIC (International Severe Acute Respiratory and Emerging Infections Consortium) cohorts in UK COVID-19 second wave, October 2020 to January 2021. PARTICIPANTS: 1383 PREDICT and 20 595 ISARIC SARS-CoV-2 patients. PRIMARY OUTCOME MEASURES: Relevance of SOARS and 4C Mortality Score determining in-hospital mortality and safe early discharge in the evolving UK COVID-19 second wave. RESULTS: 1383 (median age 67 years, IQR 52-82; mortality 24.7%) PREDICT and 20 595 (mortality 19.4%) ISARIC patient cohorts showed SOARS had area under the curve (AUC) of 0.8 and 0.74, while 4C Mortality Score had AUC of 0.83 and 0.91 for hospital mortality, in the PREDICT and ISARIC cohorts respectively, therefore, effective in evaluating safe discharge and in-hospital mortality. 19.3% (231/1195, PREDICT cohort) and 16.7% (2550/14992, ISARIC cohort) with SOARS of 0-1 were candidates for safe discharge to a virtual hospital (VH) model. SOARS implementation in the VH pathway resulted in low readmission, 11.8% (27/229) and low mortality, 0.9% (2/229). Use to prevent admission is still suboptimal, as 8.1% in the PREDICT cohort and 9.5% in the ISARIC cohort were admitted despite SOARS score of 0-1. CONCLUSIONS: SOARS and 4C Mortality Score remains valid, transforming complex clinical presentations into tangible numbers, aiding objective decision making, despite SARS-CoV-2 variants and healthcare responses altering patient demographic and mortality. Both scores, easily implemented within urgent care pathways for safe early discharge, allocate hospital resources appropriately to the pandemic's needs while enabling normal healthcare services resumption.


Assuntos
COVID-19 , Humanos , Idoso , SARS-CoV-2 , Estudos Prospectivos , Alta do Paciente , Mortalidade Hospitalar , Reino Unido/epidemiologia
5.
BMJ Open ; 11(12): e053810, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876435

RESUMO

OBJECTIVES: To investigate whether calcium derangement was a specific feature of COVID-19 that distinguishes it from other infective pneumonias, and its association with disease severity. DESIGN: A retrospective observational case-control study looking at serum calcium on adult patients with COVID-19, and community-acquired pneumonia (CAP) or viral pneumonia (VP). SETTING: A district general hospital on the outskirts of London, UK. PARTICIPANTS: 506 patients with COVID-19, 95 patients with CAP and 152 patients with VP. OUTCOME MEASURES: Baseline characteristics including hypocalcaemia in patients with COVID-19, CAP and VP were detailed. For patients with COVID-19, the impact of an abnormally low calcium level on the maximum level of hospital care, as a surrogate of COVID-19 severity, was evaluated. The primary outcome of maximal level of care was based on the WHO Clinical Progression Scale for COVID-19. RESULTS: Hypocalcaemia was a specific and common clinical finding in patients with COVID-19 that distinguished it from other respiratory infections. Calcium levels were significantly lower in those with severe disease. Ordinal regression of risk estimates for categorised care levels showed that baseline hypocalcaemia was incrementally associated with OR of 2.33 (95% CI 1.5 to 3.61) for higher level of care, superior to other variables that have previously been shown to predict worse COVID-19 outcome. Serial calcium levels showed improvement by days 7-9 of admission, only in survivors of COVID-19. CONCLUSION: Hypocalcaemia is specific to COVID-19 and may help distinguish it from other infective pneumonias. Hypocalcaemia may independently predict severe disease and warrants detailed prognostic investigation. The fact that decreased serum calcium is observed at the time of clinical presentation in COVID-19, but not other infective pneumonias, suggests that its early derangement is pathophysiological and may influence the deleterious evolution of this disease. TRIAL REGISTRATION NUMBER: 20/HRA/2344.


Assuntos
COVID-19 , Hipocalcemia , Adulto , Estudos de Casos e Controles , Humanos , Hipocalcemia/diagnóstico , Estudos Retrospectivos , SARS-CoV-2 , Índice de Gravidade de Doença , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...