Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(18): 13008-13018, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36069624

RESUMO

In situ bioremediation is a common remediation strategy for many groundwater contaminants. It was traditionally believed that (in the absence of mixing-limitations) a better in situ bioremediation is obtained in a more homogeneous medium where the even distribution of both substrate and bacteria facilitates the access of a larger portion of the bacterial community to a higher amount of substrate. Such conclusions were driven with the typical assumption of disregarding substrate inhibitory effects on the metabolic activity of enzymes at high concentration levels. To investigate the influence of pore matrix heterogeneities on substrate inhibition, we use a numerical approach to solve reactive transport processes in the presence of pore-scale heterogeneities. To this end, a rigorous reactive pore network model is developed and used to model the reactive transport of a self-inhibiting substrate under both transient and steady-state conditions through media with various, spatially correlated, pore-size distributions. For the first time, we explore on the basis of a pore-scale model approach the link between pore-size heterogeneities and substrate inhibition. Our results show that for a self-inhibiting substrate, (1) pore-scale heterogeneities can consistently promote degradation rates at toxic levels, (2) the effect reverses when the concentrations fall to levels essential for microbial growth, and (3) an engineered combination of homogeneous and heterogeneous media can increase the overall efficiency of bioremediation.


Assuntos
Água Subterrânea , Bactérias/metabolismo , Biodegradação Ambiental , Modelos Teóricos
2.
Environ Pollut ; 309: 119737, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35817302

RESUMO

Stable isotope fractionation of toluene under dynamic phase exchange was studied aiming at ascertaining the effects of gas-liquid partitioning and biodegradation of toluene stable isotope composition in liquid-air phase exchange reactors (Laper). The liquid phase consisted of a mixture of aqueous minimal media, a known amount of a mixture of deuterated (toluene-d) and non-deuterated toluene (toluene-h), and bacteria of toluene degrading strain Pseudomonas putida KT2442. During biodegradation experiments, the liquid and air-phase concentrations of both toluene isotopologues were monitored to determine the observable stable isotope fractionation in each phase. The results show a strong fractionation in both phases with apparent enrichment factors beyond -800‰. An offset was observed between enrichment factors in the liquid and the gas phase with gas-phase values showing a stronger fractionation in the gas than in the liquid phase. Numerical simulation and parameter fitting routine was used to challenge hypotheses to explain the unexpected experimental data. The numerical results showed that either a very strong, yet unlikely, fractionation of the phase exchange process or a - so far unreported - direct consumption of gas phase compounds by aqueous phase microorganisms could explain the observed fractionation effects. The observed effect can be of relevance for the analysis of volatile contaminant biodegradation using stable isotope analysis in unsaturated subsurface compartments or other environmental compartment containing a gas and a liquid phase.


Assuntos
Pseudomonas putida , Tolueno , Biodegradação Ambiental , Isótopos de Carbono/análise , Fracionamento Químico/métodos , Pseudomonas putida/metabolismo , Tolueno/análise
3.
Environ Sci Technol ; 55(11): 7386-7397, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33970610

RESUMO

Organic contaminant degradation by suspended bacteria in chemostats has shown that isotope fractionation decreases dramatically when pollutant concentrations fall below the (half-saturation) Monod constant. This masked isotope fractionation implies that membrane transfer is slow relative to the enzyme turnover at µg L-1 substrate levels. Analogous evidence of mass transfer as a bottleneck for biodegradation in aquifer settings, where microbes are attached to the sediment, is lacking. A quasi-two-dimensional flow-through sediment microcosm/tank system enabled us to study the aerobic degradation of 2,6-dichlorobenzamide (BAM), while collecting sufficient samples at the outlet for compound-specific isotope analysis. By feeding an anoxic BAM solution through the center inlet port and dissolved oxygen (DO) above and below, strong transverse concentration cross-gradients of BAM and DO yielded zones of low (µg L-1) steady-state concentrations. We were able to simulate the profiles of concentrations and isotope ratios of the contaminant plume using a reactive transport model that accounted for a mass-transfer limitation into bacterial cells, where apparent isotope enrichment factors *ε decreased strongly below concentrations around 600 µg/L BAM. For the biodegradation of organic micropollutants, mass transfer into the cell emerges as a bottleneck, specifically at low (µg L-1) concentrations. Neglecting this effect when interpreting isotope ratios at field sites may lead to a significant underestimation of biodegradation.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Biodegradação Ambiental , Isótopos de Carbono , Fracionamento Químico , Isótopos/análise , Poluentes Químicos da Água/análise
4.
Environ Sci Technol ; 54(19): 12051-12062, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32931256

RESUMO

A potential risk from human uptake of microplastics is the release of plastics-associated xenobiotics, but the key physicochemical properties of microplastics controlling this process are elusive. Here, we show that the gastrointestinal bioaccessibility, assessed using an in vitro digestive model, of two model xenobiotics (pyrene, at 391-624 mg/kg, and 4-nonylphenol, at 3054-8117 mg/kg) bound to 18 microplastics (including pristine polystyrene, polyvinyl chloride, polyethylene terephthalate, polypropylene, thermoplastic polyurethane, and polyethylene, and two artificially aged samples of each polymer) covered wide ranges: 16.1-77.4% and 26.4-83.8%, respectively. Sorption/desorption experiments conducted in simulated gastric fluid indicated that structural rigidity of polymers was an important factor controlling bioaccessibility of the nonpolar, nonionic pyrene, likely by inducing physical entrapment of pyrene in porous domains, whereas polarity of microplastics controlled bioaccessibility of 4-nonylphenol, by regulating polar interactions. The changes of bioaccessibility induced by microplastics aging corroborated the important roles of polymeric structures and surface polarity in dictating sorption affinity and degree of desorption hysteresis, and consequently, gastrointestinal bioaccessibility. Variance-based global sensitivity analysis using a deep learning neural network approach further revealed that micropore volume was the most important microplastics property controlling bioaccessibility of pyrene, whereas the O/C ratio played a key role in dictating the bioaccessibility of 4-nonylphenol in the gastric tract.


Assuntos
Aprendizado Profundo , Poluentes Químicos da Água , Adsorção , Humanos , Microplásticos , Plásticos , Poluentes Químicos da Água/análise , Xenobióticos
6.
Environ Sci Technol ; 54(7): 4583-4591, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32124609

RESUMO

Most contaminants of emerging concern are polar and/or ionizable organic compounds, whose removal from engineered and environmental systems is difficult. Carbonaceous sorbents include activated carbon, biochar, fullerenes, and carbon nanotubes, with applications such as drinking water filtration, wastewater treatment, and contaminant remediation. Tools for predicting sorption of many emerging contaminants to these sorbents are lacking because existing models were developed for neutral compounds. A method to select the appropriate sorbent for a given contaminant based on the ability to predict sorption is required by researchers and practitioners alike. Here, we present a widely applicable deep learning neural network approach that excellently predicted the conventionally used Freundlich isotherm fitting parameters log KF and n (R2 > 0.98 for log KF, and R2 > 0.91 for n). The neural network models are based on parameters generally available for carbonaceous sorbents and/or parameters freely available from online databases. A freely accessible graphical user interface is provided.


Assuntos
Poluentes Ambientais , Nanotubos de Carbono , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Aprendizado Profundo , Redes Neurais de Computação
7.
Environ Sci Technol ; 53(16): 9481-9490, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31262174

RESUMO

While they are theoretically conceptualized to restrict biodegradation of organic contaminants, bioavailability limitations are challenging to observe directly. Here we explore the onset of mass transfer limitations during slow biodegradation of the polycyclic aromatic hydrocarbon 2-methylnaphthalene (2-MN) by the anaerobic, sulfate-reducing strain NaphS2. Carbon and hydrogen compound specific isotope fractionation was pronounced at high aqueous 2-MN concentrations (60 µM) (εcarbon = -2.1 ± 0.1‰/εhydrogen = -40 ± 7‰) in the absence of an oil phase but became significantly smaller (εcarbon = -0.9 ± 0.3‰/εhydrogen = -6 ± 3‰) or nondetectable when low aqueous concentrations (4 µM versus 0.5 µM) were in equilibrium with 80 or 10 mM 2-MN in hexadecane, respectively. This masking of isotope fractionation directly evidenced mass transfer limitations at (sub)micromolar substrate concentrations. Remarkably, oil-water mass transfer coefficients were 60-90 times greater in biotic experiments than in the absence of bacteria (korg-aq2-MN = 0.01 ± 0.003 cm h-1). The ability of isotope fractionation to identify mass transfer limitations may help study how microorganisms adapt and navigate at the brink of bioavailability at low concentrations. For field surveys our results imply that, at trace concentrations, the absence of isotope fractionation does not necessarily indicate the absence of biodegradation.


Assuntos
Naftalenos , Anaerobiose , Biodegradação Ambiental , Isótopos de Carbono
8.
J Contam Hydrol ; 224: 103481, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31005265

RESUMO

Fate and transport of solutes in heterogeneous porous media is largely affected by diffusive mass exchange between mobile and immobile water zones. Since it is difficult to directly measure and determine the effect in the aquifers, multi-tracer experiments in combination with mathematical modeling are used to obtain quantitative information about unknown system parameters such as the effective mobile and immobile porosity, and the diffusive mass exchange between mobile and immobile water zones. The Single Fissure Dispersion Model (SFDM) describing nonreactive transport of solutes in saturated dual-porosity media, has been employed as a modeling approach to explain dual-porosity experiments in the field and laboratory (column experiments). SFDM optimization with conventional methods of minimization was immensely difficult due to its complex analytical form. Thus, previous studies used a trial and error procedure to fit it to the experimental observations. In this study, a rigorous optimization technique based on the newly developed scatter search method is presented that automatically minimizes the SFDM to find the optimal values of the hydrogeologically related parameters. The new program (OptSFDM) is accompanied with an easy-to-use graphical user interface (GUI) that is flexible and fully integrated. The program usability is showcased by a few, previously presented experimental case studies, and compared against the currently available, trial-and-error based, command-line executable, SFDM code.


Assuntos
Água Subterrânea , Movimentos da Água , Difusão , Modelos Teóricos , Porosidade
9.
Environ Sci Technol ; 53(3): 1197-1205, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30514083

RESUMO

Biodegradation of persistent micropollutants like pesticides often slows down at low concentrations (µg/L) in the environment. Mass transfer limitations or physiological adaptation are debated to be responsible. Although promising, evidence from compound-specific isotope fractionation analysis (CSIA) remains unexplored for bacteria adapted to this low concentration regime. We accomplished CSIA for degradation of a persistent pesticide, atrazine, during cultivation of Arthrobacter aurescens TC1 in chemostat under four different dilution rates leading to 82, 62, 45, and 32 µg/L residual atrazine concentrations. Isotope analysis of atrazine in chemostat experiments with whole cells revealed a drastic decrease in isotope fractionation with declining residual substrate concentration from ε(C) = -5.36 ± 0.20‰ at 82 µg/L to ε(C) = -2.32 ± 0.28‰ at 32 µg/L. At 82 µg/L ε(C) represented the full isotope effect of the enzyme reaction. At lower residual concentrations smaller ε(C) indicated that this isotope effect was masked indicating that mass transfer across the cell membrane became rate-limiting. This onset of mass transfer limitation appeared in a narrow concentration range corresponding to about 0.7 µM assimilable carbon. Concomitant changes in cell morphology highlight the opportunity to study the role of this onset of mass transfer limitation on the physiological level in cells adapted to low concentrations.


Assuntos
Atrazina , Fracionamento Químico , Biodegradação Ambiental , Isótopos de Carbono , Isótopos de Nitrogênio
10.
Environ Sci Technol ; 53(3): 1186-1196, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30339002

RESUMO

We present a framework to model microbial transformations in chemostats and retentostats under transient or quasi-steady state conditions. The model accounts for transformation-induced isotope fractionation and mass-transfer across the cell membrane. It also verifies that the isotope fractionation ϵ can be evaluated as the difference of substrate-specific isotope ratios between inflow and outflow. We explicitly considered that the dropwise feeding of substrate into the reactor at very low dilution rates leads to transient behavior of concentrations and transformation rates and use this information to validate conditions under which a quasi-steady state treatment is justified. We demonstrate the practicality of the code by modeling a chemostat experiment of atrazine degradation at low dilution/growth rates by the strain Arthrobacter aurescens TC1. Our results shed light on the interplay of processes that control biodegradation and isotope fractionation of contaminants at low (µg/L) concentration levels. With the help of the model, an estimate of the mass-transfer coefficient of atrazine through the cell membrane was achieved (0.0025 s-1).


Assuntos
Arthrobacter , Atrazina , Biodegradação Ambiental , Isótopos de Carbono , Fracionamento Químico , Isótopos
11.
Environ Sci Technol ; 52(7): 4137-4144, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29495658

RESUMO

Biodegradation of persistent pesticides like atrazine often stalls at low concentrations in the environment. While mass transfer does not limit atrazine degradation by the Gram-positive Arthrobacter aurescens TC1 at high concentrations (>1 mg/L), evidence of bioavailability limitations is emerging at trace concentrations (<0.1 mg/L). To assess the bioavailability constraints on biodegradation, the roles of cell wall physiology and transporters remain imperfectly understood. Here, compound-specific isotope analysis (CSIA) demonstrates that cell wall physiology (i.e., the difference between Gram-negative and Gram-positive bacteria) imposes mass transfer limitations in atrazine biodegradation even at high concentrations. Atrazine biodegradation by Gram-negative Polaromonas sp. Nea-C caused significantly less isotope fractionation (ε(C) = -3.5 ‰) than expected for hydrolysis by the enzyme TrzN (ε(C) = -5.0 ‰) and observed in Gram-positive Arthrobacter aurescens TC1 (ε(C) = -5.4 ‰). Isotope fractionation was recovered in cell-free extracts (ε(C) = -5.3 ‰) where no cell envelope restricted pollutant uptake. When active transport was inhibited with cyanide, atrazine degradation rates remained constant demonstrating that atrazine mass transfer across the cell envelope does not depend on active transport but is a consequence of passive cell wall permeation. Taken together, our results identify the cell envelope of the Gram-negative bacterium Polaromonas sp. Nea-C as a relevant barrier for atrazine biodegradation.


Assuntos
Arthrobacter , Atrazina , Biodegradação Ambiental , Isótopos de Carbono , Fracionamento Químico , Isótopos de Nitrogênio , Permeabilidade
12.
Environ Model Softw ; 98: 12-20, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29200932

RESUMO

A modeling framework (ReKinSim - Reaction Kinetics Simulator) is introduced, within which biogeochemical reactions in environmental systems can be described and inversely fitted to experimental data. Three key features of this simulation environment are: (1) a generic mathematical tool for solving sets of unlimited, arbitrary, non-linear ordinary differential equations; (2) no limitation to the number or type of reactions or other influential dynamics (e.g., isotope fractionation or small-scale mass-transfer limitations); (3) an easy to use and flexible module for nonlinear data-fitting. It allows users to easily define any kinetic model by a set of biogeochemical reactions relevant to the experimental application and to obtain the values of the kinetic parameters by fitting of the model to data. By allowing users to include the environmentally related processes and solving them along with the chemical kinetics, ReKinSim helps the user to elucidate the extent that these processes are controlled by factors other than kinetics. The novelty of the presented program primary lays in its unique combination of flexibility, computational efficiency and user-friendliness. ReKinSim's usability is showcased by four case studies of varying complexity, and compared against a set of currently available modeling tools.

13.
Environ Sci Technol ; 49(9): 5529-37, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25839352

RESUMO

Microbial degradation is an important process in many environments controlling for instance the cycling of nutrients or the biodegradation of contaminants. At high substrate concentrations toxic effects may inhibit the degradation process. Bioavailability limitations of a degradable substrate can therefore either improve the overall dynamics of degradation by softening the contaminant toxicity effects to microorganisms, or slow down the biodegradation by reducing the microbial access to the substrate. Many studies on biodegradation kinetics of a self-inhibitive substrate have mainly focused on physiological responses of the bacteria to substrate concentration levels without considering the substrate bioavailability limitations rising from different geophysical and geochemical dynamics at pore-scale. In this regard, the role of bioavailability effects on the kinetics of self-inhibiting substrates is poorly understood. In this study, we theoretically analyze this role and assess the interactions between self-inhibition and mass transfer-limitations using analytical/numerical solutions, and show the findings practical relevance for a simple model scenario. Although individually self-inhibition and mass-transfer limitations negatively impact biodegradation, their combined effect may enhance biodegradation rates above a concentration threshold. To our knowledge, this is the first theoretical study describing the cumulative effects of the two mechanisms together.


Assuntos
Bactérias/metabolismo , Algoritmos , Biodegradação Ambiental , Disponibilidade Biológica , Cinética , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...