Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Environ Health Res ; 34(2): 661-673, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603148

RESUMO

The present research displays the green synthesis of stable silver nanoparticles (Ag-NPs) and copper oxide nanoparticles (CuO-NPs). The aqueous solution of Spirulina platensis (blue green algae) source was used as a reducing and capping agent and this study assessed the cytotoxicity of Ag- and CuO-NPs on three cancer cell cultures: A549 (lung cancer), HCT (human colon cancer), Hep2 (laryngeal carcinoma cancer) and normal cell (WISH). For NPs characterization, the UV/Vis spectroscopy was used where their formation and crystallinity were proven with λmax values for Ag- and CuO-NPs of 425 and 234 nm, respectively. According to X-ray diffraction and transmission electron microscopy (TEM), Ag-NPs were spherical in shape (size 2.23-14.68 nm) and CuO-NPs were small (size 3.75-12.4 nm). Zeta potential analysis showed the particles potential, which was recorded by -14.95 ± 4.31 mV for Ag-NPs and -21.63 ± 4.90 mV for CuO-NPs. After that, Ag- and CuO-NPs were assessed for anticancer properties against A549, HCT, Hep2 and WISH. IC50 of Ag-NPs recorded 15.67, 12.94, 3.8 and 10.44 µg/ml for WISH, A549, HCT and Hep2, respectively. IC50 for CuO-NPs was recorded as 32.64, 54.59, 3.98 and 20.56 µg/ml for WISH, A549, HCT and Hep2 cells, respectively. Safety limits for WISH and A549 were achieved 98.64% by 2.44 µg/ml and 83.43% by 4.88 µg/ml of Ag-NPs, and it was found to be 97.94% by 2.44 µg/ml against HCT, while that for Hep2 is 95.9% by 2.44 µg/ml. Concerning the anticancer effect of CuO-NPs, the safety limit was recorded as 88.70% by 2.44 and 98.48% by 4.88 µg/ml against WISH and A549, while HCT reached 89.92% by 2.44 µg/ml and Hep2 was 83.33% by 4.88 µg/ml. Green nanotechnology applications such as Ag-NPs and CuO-NPs have numerous benefits of ecofriendliness and compatibility for biomedical applications such as anticancer effects against cancer cells.


Assuntos
Nanopartículas Metálicas , Prata , Spirulina , Humanos , Prata/química , Prata/farmacologia , Cobre/química , Cobre/farmacologia , Microscopia Eletrônica de Transmissão
2.
Heliyon ; 9(5): e16125, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37251841

RESUMO

The wide spread of nanotechnology applications currently carries with it the possibility of polluting the environment with the residues of these nanomaterials, especially those in the metallic form. Therefore, it is necessary to study the possibility of treating and removing various nanoscale metal pollutants in environmentally friendly ways. The present study focused on the isolation of multi-metal tolerant fungi to be applied in the bioremoval of Zn, Fe, Se, and Ag nanoparticles as potential nanoscale metal pollutants. Aspergillus sp. has been isolated as multi-metal tolerant fingus and investigated in the bioremoval of targeted nanometals from their aquoues solutions. The effect of biomass age, pH, and contact time was studied to determine the optimal biosorption conditions for fungal pellets towards metal NPs. The results showed a high percentage of fungal biosorption on the of two-day-old cells, which amounted to 39.3, 52.2, 91.7, and 76.8% of zinc, iron, selenium, and silver, respectively. The pH 7 was recorded the highest percentage of NPs removal for the four studied metals i.e. 38.8, 68.1, 80.4, and 82.0% of Zn-, Fe-, Se- and Ag-NPs, respectively. The contact time required between Aspergillus sp. and the metal nanoparticles to obtain the best adsorption was only 10 min in the case of Zn and Ag, but it was 40 min for both Fe and Se NPs. The efficiency of living fungal pellets in removing the four metallic NPs exceeded that of dead biomass by 1.8, 5.7, 2.5, and 2.5 folds for Zn, Fe, Se and Ag, respectively. However, utilization of dead fungal biomass for metallic NPs removal could be considered more applicable to the actual environmental applications.

3.
Int J Biol Macromol ; 83: 277-81, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26645148

RESUMO

Water pollution is among the most hazardous problems that threaten human health worldwide. Chitosan is a marvelous bioactive polymer that could be produced from fungal mycelia. This study was conducted to produce chitosan from Cunninghamella elegans and to use it for water pollutants elimination, e.g. heavy metals and waterborne microorganisms, and to investigate its antibacterial mode of action against Escherichia coli. The produced fungal chitosan had a deacetylation degree of 81%, a molecular weight of 92.73 kDa and a matched FT-IR spectrum with standard shrimp chitosan. Fungal chitosan exhibited remarkable antimicrobial activity against E. coli, Staphylococcus aureus and Candida albicans. Chitosan was proved as an effective metal adsorbent, toward the examined metal ions, Cu2+, Zn2+ and Pb2+, and its adsorption capacity greatly increased with the increasing of metal concentration, especially for Cu and Zn. The scanning electron micrographs, of treated E. coli cells with fungal chitosan, indicated that the cells began to lyse and combine after 3h of exposure and chitosan particles attached to the combined cells and, after 12 h from exposure, the entire bacterial cell walls were fully disrupted and lysed. Therefore, fungal chitosan could be recommended, as a bioactive, renewable, ecofriendly and cost effective material, for overcoming water pollution problems, from chemical and microbial origins.


Assuntos
Quitosana/química , Cunninghamella/química , Metais Pesados/química , Metais Pesados/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Água/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Biodegradação Ambiental , Candida albicans/efeitos dos fármacos , Quitosana/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...