Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Neuropharmacol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38591198

RESUMO

Melamine, a heterocyclic nitrogen-rich triazine chemical compound, is widely used in various household products, including furniture, dinnerware, and kitchen appliances. The unauthorized addition of the mixture to various foodstuffs to misrepresent protein content resulted in catastrophic, frequently life-threatening health consequences for kids as well as canines and has garnered international attention. Numerous primary studies and evaluations have been focused on melamine toxicity's implications on kidney function. Despite the profusion of literature on melamine's nephrotoxicity, evidence regarding its toxicity to other organs remains scarce. A number of recent studies suggest melamine can disrupt central nervous system (CNS) function and bring about cognitive impairments, contradicting the commonly held belief that melamine's detrimental effects are limited to the urinary system. The accumulation of melamine in the body is linked to various adverse effects, including depression, impaired synaptic transmission, oxidative stress, and neurodegenerative diseases. Several mechanisms may lead to such complications. However, numerous safeguards against melamine accumulation have been identified. This review could shed light on the potential neurological effects and mechanisms underlying melamine toxicity. Afterward, we will dive into the body's possible protective mechanisms against melamine-induced toxicity.

2.
Food Chem Toxicol ; 187: 114608, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522498

RESUMO

Metal-organic frameworks (MOFs) are known as potential pharmaceutical carriers because of their structure. Here, we evaluated the sub-acute administrations of MOF-5 on behavioral parameters, oxidative stress, and inflammation levels in rats. Thirty-two male Wistar rats received four injections of saline or MOF-5 at different doses which were 1, 10, and 50 mg/kg via caudal vein. Y-Maze and Morris-Water Maze (MWM) tests were used to explore working memory and spatial learning and memory, respectively. The antioxidant capacity and oxidative stress level of brain samples were assessed by ferric reducing antioxidant power (FRAP) and thiobarbituric acid-reacting substance (TBARS) assay, respectively. The expression levels of GFAP, IL-1ß, and TNF-α were also measured by quantitative real-time reverse-transcription PCR (qRT-PCR). Sub-acute administration of MOF-5 reduced the spatial learning and memory as well as working memory, dose-dependently. The levels of FRAP were significantly reduced in rats treated with MOF-5 at higher doses. The Malondialdehyde (MDA) levels increased at the dose of 50 mg/kg. Additionally, the expression levels of IL-1ß and TNF-α were significantly elevated in the rats' brains that were treated with MOF-5. Our findings indicate that sub-acute administration of MOF-5 induces cognitive impairment dose-dependently which might be partly mediated by increasing oxidative stress and inflammation.


Assuntos
Antioxidantes , Estruturas Metalorgânicas , Ratos , Animais , Masculino , Ratos Wistar , Antioxidantes/metabolismo , Transtornos da Memória/tratamento farmacológico , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Hipocampo/metabolismo , Encéfalo/metabolismo , Estresse Oxidativo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Aprendizagem em Labirinto
3.
J Cell Physiol ; 239(5): e31230, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403972

RESUMO

Multiple sclerosis (MS) is a chronic central nervous system (CNS) disorder characterized by demyelination, neuronal damage, and oligodendrocyte depletion. Reliable biomarkers are essential for early diagnosis and disease management. Emerging research highlights the role of mitochondrial dysfunction and oxidative stress in CNS disorders, including MS, in which mitochondria are central to the degenerative process. Adenosine monophosphate-activated protein kinase (AMPK) regulates the mitochondrial energy balance and initiates responses in neurodegenerative conditions. This systematic review, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, aimed to comprehensively assess the literature on AMPK pathways, mitochondrial dysfunction, and in vivo studies using MS animal models. The search strategy involved the use of AMPK syntaxes, MS syntaxes, and animal model syntaxes. The PubMed, Scopus, Web of Science, and Google Scholar databases were systematically searched on August 26, 2023 without publication year restrictions. The review identified and analyzed relevant papers to provide a comprehensive overview of the current state of related research. Eight studies utilizing various interventions and methodological approaches were included. Risk of bias assessment revealed some areas of low risk but lacked explicit reporting in others. These studies collectively revealed a complex relationship between AMPK, mitochondrial dysfunction, and MS pathogenesis, with both cuprizone and experimental autoimmune encephalomyelitis models demonstrating associations between AMPK and mitochondrial disorders, including oxidative stress and impaired expression of mitochondrial genes. These studies illuminate the multifaceted role of AMPK in MS animal models, involving energy metabolism, inflammatory processes, oxidative stress, and gene regulation leading to mitochondrial dysfunction. However, unanswered questions about its mechanisms and clinical applications underscore the need for further research to fully harness its potential in addressing MS-related mitochondrial dysfunction.


Assuntos
Proteínas Quinases Ativadas por AMP , Modelos Animais de Doenças , Mitocôndrias , Esclerose Múltipla , Estresse Oxidativo , Animais , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Esclerose Múltipla/enzimologia , Mitocôndrias/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Humanos , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia
4.
Mol Neurobiol ; 61(1): 498-509, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37639065

RESUMO

Despite the anatomical separation, strong evidence suggested a bidirectional association between gut microbiota and central nervous system. Cross-talk between gut microbiota and brain has an important role in the pathophysiology of neurodegenerative disorders and regenerative processes. However, choosing the appropriate probiotics and combination therapy of probiotics to provide a synergistic effect is very crucial. In the present study, we investigated the effect of Lactobacillus casei (L. casei) and Bifidobacterium breve (B. breve) on alternation performance, oxidant/antioxidant biomarkers, the extent of demyelination, and the expression level of HO-1, Nrf-2, Olig2, MBP, PDGFRα, and BDNF in cuprizone (CPZ)-induced demyelination model of rat corpus callosum. In order to induce this model, rats received oral administration of CPZ 0.6% w/w in corn oil for 28 days. Then, L. casei, B. breve, or their combinations were orally administrated for 28 days. Y maze test was performed to investigate the alternation performance. Oxidant/antioxidant biomarkers were determined by colorimetric methods. Extent of demyelination was investigated using FluoroMyelin staining. The genes' expression levels of antioxidant and myelin lineage cells were assessed by quantitative real time PCR. The results showed the probiotics supplementation significantly improve the alternation performance and antioxidant capacity in demyelinated corpus callosum. Interestingly, B. breve supplementation alleviated demyelination and oxidative stress levels more than the administration of L. casei alone or the combination of two probiotics. These observations suggest that B. breve could provide a supplementary strategy for the treatment of multiple sclerosis by increasing antioxidant capacity and remyelination.


Assuntos
Bifidobacterium breve , Doenças Desmielinizantes , Lacticaseibacillus casei , Probióticos , Ratos , Animais , Cuprizona/toxicidade , Antioxidantes , Bifidobacterium/fisiologia , Probióticos/farmacologia , Probióticos/uso terapêutico , Estresse Oxidativo , Doenças Desmielinizantes/induzido quimicamente , Biomarcadores , Oxidantes
5.
Microb Pathog ; 181: 106206, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331670

RESUMO

Toxoplasmosis is a zoonotic protozoal disease affecting approximately one-third of the world's population. The lack of current treatment options necessitates the development of drugs with good tolerance and effectiveness on the active and cystic stages of the parasite. The present study was established to investigate, for the first time, the potential potency of clofazimine (CFZ) against acute and chronic experimental toxoplasmosis. For this purpose, the type II T. gondii (Me49 strain) was used for induction acute (20 cysts in each mouse) and chronic (10 cysts in each mouse) experimental toxoplasmosis. The mice were treated with 20 mg/kg of CFZ intraperitoneally and orally. The histopathological changes, brain cyst count, total Antioxidant Capacity (TAC), malondialdehyde (MDA) assay, and the level of INF-γ were also evaluated. In the acute toxoplasmosis, both IP and oral administration of CFZ induced a significant reduction in brain parasite burden by 90.2 and 89%, respectively, and increased the survival rate to 100% compared with 60% in untreated controls. In the chronic infection, cyst burden decreased at 85.71 and 76.18% in CFZ-treated subgroups in comparison to infected untreated controls. In addition, 87.5% and 100% of CFZ-treated subgroups survived versus untreated control 62.5%. Moreover, CFZ significantly increased INF-γ levels in acute and chronic toxoplasmosis. Tissue inflammatory lesions were considerably reduced in the CFZ-treated chronic subgroups. CFZ treatment significantly reduced MDA levels and elevated TAC in both acute and chronic infections. In conclusion, CFZ showed a promising finding regarding the ability to reduce cyst burden in acute and chronic infection. Further studies are needed to investigate the therapeutic role of CFZ on toxoplasmosis using the long-term treatment and more advanced approaches. In addition, clofazimine may need to be accompanied by another drug to augment its effect and prevent the regrowth of parasites.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Camundongos , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Infecção Persistente , Toxoplasmose/tratamento farmacológico , Toxoplasmose/patologia , Encéfalo/patologia , Zoonoses
6.
Brain Sci ; 13(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36979225

RESUMO

Understanding the transmission pathways of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will aid in developing effective therapies directed at the virus's life cycle or its side effects. While severe respiratory distress is the most common symptom of a coronavirus 2019 (COVID-19) infection, the virus is also known to cause damage to almost every major organ and system in the body. However, it is not obvious whether pathological changes in extra-respiratory organs are caused by direct infection, indirect, or combination of these effects. In this narrative review, we first elaborate on the characteristics of SARS-CoV-2, followed by the mechanisms of this virus on various organs such as brain, eye, and olfactory nerve and different systems such as the endocrine and gastrointestinal systems.

7.
Curr Neuropharmacol ; 21(9): 1980-1991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825702

RESUMO

Loss of myelination is common among neurological diseases. It causes significant disability, even death, if it is not treated instantly. Different mechanisms involve the pathophysiology of demyelinating diseases, such as genetic background, infectious, and autoimmune inflammation. Recently, regenerative medicine and stem cell therapy have shown to be promising for the treatment of demyelinating disorders. Stem cells, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cells (ASCs), can differentiate into oligodendrocyte progenitor cells (OPCs), which may convert to oligodendrocytes (OLs) and recover myelination. IPSCs provide an endless source for OPCs generation. However, the restricted capacity of proliferation, differentiation, migration, and myelination of iPSC-derived OPCs is a notable gap for future studies. In this article, we have first reviewed stem cell therapy in demyelinating diseases. Secondly, methods of different protocols have been discussed among in vitro and in vivo studies on iPSC-derived OPCs to contrast OPCs' transplantation efficacy. Lastly, we have reviewed the results of iPSCs-derived OLs production in each demyelination model.


Assuntos
Doenças Desmielinizantes , Células-Tronco Pluripotentes Induzidas , Células Precursoras de Oligodendrócitos , Humanos , Oligodendroglia , Diferenciação Celular/genética , Doenças Desmielinizantes/terapia
8.
Cells ; 11(24)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36552892

RESUMO

Epilepsy is a life-threatening neurological disease that affects approximately 70 million people worldwide. Although the vast majority of patients may be successfully managed with currently used antiseizure medication (ASM), the search for alternative therapies is still necessary due to pharmacoresistance in about 30% of patients with epilepsy. Here, we review the effects of ASMs on stem cell treatment when they could be, as expected, co-administered. Indeed, it has been reported that ASMs produce significant effects on the differentiation and determination of stem cell fate. In addition, we discuss more recent findings on mesenchymal stem cells (MSCs) in pre-clinical and clinical investigations. In this regard, their ability to differentiate into various cell types, reach damaged tissues and produce and release biologically active molecules with immunomodulatory/anti-inflammatory and regenerative properties make them a high-potential therapeutic tool to address neuroinflammation in different neurological disorders, including epilepsy. Overall, the characteristics of MSCs to be genetically engineered, in order to replace dysfunctional elements with the aim of restoring normal tissue functioning, suggested that these cells could be good candidates for the treatment of epilepsy refractory to ASMs. Further research is required to understand the potential of stem cell treatment in epileptic patients and its interaction with ASMs.


Assuntos
Epilepsia , Células-Tronco Mesenquimais , Humanos , Epilepsia/terapia , Células-Tronco , Diferenciação Celular , Engenharia Genética
9.
Basic Clin Neurosci ; 13(3): 335-347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457888

RESUMO

Introduction: Evidence suggests that gestational exposure to Lipopolysaccharide (LPS) results in fetal zinc deficiency and eventually neurodevelopmental abnormalities. In this study, we utilized a rat model of Maternal Immune Activation (MIA) to investigate the possible neuroprotective effects of zinc supplementation during pregnancy on hippocampal astrocytes activation as well as inflammatory cytokines expression in adult offspring. Methods: Pregnant rats received intraperitoneal injections of either LPS (0.5 mg/kg) or saline on Gestational Days (GD) 15 and 16, and orally gavaged with zinc sulfate (30 mg/kg) during pregnancy. Astrocyte density and histological assessment were evaluated in the hippocampus of adult offspring on Postnatal Days (PND) 60 to 62. Also, the mRNA levels of IL-6, TNF-α, IL-1ß, NF-κB, and GFAP were measured using qPCR analysis. Results: Prenatal exposure to LPS resulted in upregulated expression levels of IL-6, TNF-α, NF-κB, and GFAP in the hippocampus of adult pups. Moreover, the offspring from the LPS group showed an increased astrocyte density in the CA1 region with no histological alterations in CA1 and CA3 areas. However, maternal zinc supplementation ameliorated the LPS-induced inflammatory alterations. Conclusion: This study supports the premise that zinc supplementation during pregnancy might be an early treatment option to inhibit hippocampal inflammation induced by the maternal immune response to infectious agents. Highlights: Maternal immune activation induced mild hippocampal inflammation in adult offspring.Zinc supplementation suppressed LPS-induced hippocampal inflammation in offspring.Zinc might be an early therapeutic option to inhibit neurodevelopmental impairments. Plain Language Summary: Schizophrenia is a chronic and disabling psychiatric disorder, affecting an estimated one percent of the world's population. To date, the biological mechanisms underlying this mental disorder remain largely elusive, however, research has demonstrated the involvement of both genetic and environmental factors. Of environmental factors, gestational exposure to rubella, influenza, and genital-reproductive infections have gained particular interest among researchers. Based on this evidence, in the present study, we used an animal model of schizophrenia and showed the beneficial effect of zinc supplementation during pregnancy to protect against LPS-induced inflammation in the hippocampus of adult offspring. Collectively, our study provides support for the premise that early treatment might be a suitable option to prevent schizophrenia risk in progeny.

10.
Mult Scler Relat Disord ; 59: 103518, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35086052

RESUMO

BACKGROUND: Fingolimod (FTY720) is an oral immunosuppressive compound that has been prescribed to multiple sclerosis (MS) patients since 2010. The lipophilicity and low molecular weight of FTY720 allows it to cross blood brain barrier (BBB) and exert both peripheral and central effects. Previous reports showed that intranasal (IN) administration of drugs are the preferred non-invasive route, which bypasses BBB and improves their delivery and bioavailability in the central nervous system (CNS). Therefore, we aimed to compare the effects of IN and oral administrations of FTY720 on astrocyte activation and demyelination levels of optic chiasm in a focal demyelination model. METHODS: The experimental model was induced by injection of 2 µL lysolecithin 1% into the optic chiasm of male Wistar rats. The rats were treated by oral gavage or intranasal drop of FTY720 at dose of 0.3 mg/kg for 14 days. Astrocyte activation was analyzed using GFAP immunostaining, extent of demyelination, and myelination levels were measured by fluoromyelin staining, and MOG immunostaining, respectively. Then, the concentration of FTY720 was measured by high performance liquid chromatography (HPLC) method in brain tissues. RESULTS: Our data showed that IN administration of FTY720 significantly decreases astrocyte activation and demyelination levels in the optic chiasm compared to the oral administration route. In addition, the concentration of FTY720 was higher in the brain tissue of IN receiving rats compared to the oral treated group. CONCLUSION: It seems that IN administration of FTY720 may be a preferred route to decline the central inflammation and demyelination levels in the MS patients.


Assuntos
Doenças Desmielinizantes , Cloridrato de Fingolimode , Administração Intranasal , Animais , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Modelos Animais de Doenças , Cloridrato de Fingolimode/uso terapêutico , Imunossupressores/uso terapêutico , Lisofosfatidilcolinas/efeitos adversos , Masculino , Quiasma Óptico , Ratos , Ratos Wistar
11.
Int Rev Immunol ; 41(2): 57-71, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32997552

RESUMO

Despite numerous studies on multiple sclerosis (MS) and understanding many aspects of this disease, researchers still struggle to find proper biomarkers that facilitate diagnosis; prognosis and monitoring of treatment efficacy in MS. MicroRNAs (miRNAs) are considered as endogenous, comparatively stable and small non-coding RNAs involved in various biological and pathological signaling pathways. Interestingly, miRNAs have been emerged as a potential biomarker for monitoring novel therapies in MS patients. In this review, we described the miRNAs alteration in the MS patients as well as their altered expression in patients under common MS therapies.


Assuntos
MicroRNAs , Esclerose Múltipla , Biomarcadores/metabolismo , Humanos , MicroRNAs/genética , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/genética , Prognóstico
12.
Curr Neuropharmacol ; 20(4): 766-776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34259148

RESUMO

BACKGROUND: Phthalates are widely used in the plastics industry. Di-2-Ethylhexyl Phthalate (DEHP) is one of the most important phthalate metabolites that disrupt the function of endocrine glands. Exposure to DEHP causes numerous effects on animals, humans, and the environment. Low doses of DEHP increase neurotoxicity in the nervous system that has arisen deep concerns due to the widespread nature of DEHP exposure and its high absorption during brain development. OBJECTIVE: In this review article, we evaluated the impacts of DEHP exposure from birth to adulthood on neurobehavioral damages. Then, the possible mechanisms of DEHP-induced neurobehavioral impairment were discussed. METHODOLOGY: Peer-reviewed articles were extracted through Embase, PubMed, and Google Scholar till the year 2021. RESULTS: The results showed that exposure to DEHP during pregnancy and infancy leads to memory loss and irreversible nervous system damage. CONCLUSION: Overall, it seems that increased levels of oxidative stress and inflammatory mediators possess a pivotal role in DEHP-induced neurobehavioral impairment.


Assuntos
Dietilexilftalato , Síndromes Neurotóxicas , Ácidos Ftálicos , Adulto , Animais , Sistema Nervoso Central , Dietilexilftalato/toxicidade , Feminino , Humanos , Gravidez
13.
Curr Neuropharmacol ; 20(6): 1093-1115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34970956

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative impairment mainly recognized by memory loss and cognitive deficits. However, the current therapies against AD are mostly limited to palliative medications, prompting researchers to investigate more efficient therapeutic approaches for AD, such as stem cell therapy. Recent evidence has proposed that extensive neuronal and synaptic loss and altered adult neurogenesis, which is perceived pivotal in terms of plasticity and network maintenance, occurs early in the course of AD, which exacerbates neuronal vulnerability to AD. Thus, regeneration and replenishing the depleted neuronal networks by strengthening the endogenous repair mechanisms or exogenous stem cells and their cargoes is a rational therapeutic approach. Currently, several stem cell-based therapies as well as stem cell products like exosomes, have shown promising results in the early diagnosis of AD. OBJECTIVE: This review begins with a comparison between AD and normal aging pathophysiology and a discussion on open questions in the field. Next, summarizing the current stem cell-based therapeutic and diagnostic approaches, we declare the advantages and disadvantages of each method. Also, we comprehensively evaluate the human clinical trials of stem cell therapies for AD. METHODOLOGY: Peer-reviewed reports were extracted through Embase, PubMed, and Google Scholar until 2021. RESULTS: With several ongoing clinical trials, stem cells and their derivatives (e.g., exosomes) are an emerging and encouraging field in diagnosing and treating neurodegenerative diseases. Although stem cell therapies have been successful in animal models, numerous clinical trials in AD patients have yielded unpromising results, which we will further discuss.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/terapia , Animais , Humanos , Neurogênese , Neurônios , Transplante de Células-Tronco/métodos
14.
Int J Mol Cell Med ; 10(2): 149-155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34703798

RESUMO

Toxoplasma gondii, an obligate intracellular parasite, infects more than 30% of world's population. This parasite is considered to be neurotropic, and has high tropism for the central nervous system, and potentially induces cryptogenic epilepsy by no clear mechanism. The current study aimed to investigate the alteration of the main components of the endocannabinoid signaling systems in T. gondii-infected mice. For this purpose, the levels of mRNA expression of monoacylglycerol lipase (MAGL), diacylglycerol lipase (DAGL) and cannabinoid receptor-1 (CB1), were measured by quantitative real time PCR.The mRNA expression level of MAGL was increased by ~ 8-fold in the brains of the Toxoplasma-infected group in comparison with non-infected mice (P<0.0001). The mRNA expression of CB1 gene in the brain of the infected mice was ~ 2 times higher than that measured in control group (P<0.01). The mRNA expression level of DAGL remained unchanged in the infected mice. Overall a substantial increase in MAGL and CB1 expression without any changes in DAGL, in the brain of infected mice suggests that T. gondii disturbs the endocannabinoid signaling pathways, which are known as neurotransmitter modulators involved in epilepsy.

15.
Brain Res Bull ; 176: 54-66, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34419511

RESUMO

During the last decades, graphitic carbon nitride (g-C3N4) has attracted increasing attention in several biomedical fields. In this study, the effects of sulfur-doped g-C3N4 (TCN) on cognitive function and histopathology of hippocampus were investigated in mice. The characteristics of synthetized sample were evaluated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and energy dispersive X-ray (EDX). Twenty-four male NMRI mice received vehicle, TCN at doses of 50, 150, or 500 mg/kg via gavage for one week. Morris water maze test was done to assess the cognitive function at day 14 post TCN administration. Nissl staining was used to determine the number of dark cells in the hippocampus. Immunostaining against NeuN, GFAP, and Iba1 was done to evaluate the neuronal density and levels of glial activation, respectively. Behavioral tests indicated that TCN reduces the spatial learning and memory in a dose-dependent manner. Histological evaluations showed an increased level of neuronal loss and glial activation in the hippocampus of TCN treated mice at doses of 150 and 500 mg/kg. Overall, our data indicate that TCN induces the cognitive impairment that is partly mediated via its exacerbating impacts on neuronal loss and glial activation.


Assuntos
Cognição/efeitos dos fármacos , Disfunção Cognitiva , Grafite/administração & dosagem , Hipocampo/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Compostos de Nitrogênio/administração & dosagem , Memória Espacial/efeitos dos fármacos , Enxofre , Animais , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Mol Biol Rep ; 48(8): 5905-5912, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34313925

RESUMO

BACKGROUND: Several genome-wide association studies showed that a series of genetic variants located at the chromosome 9p21 locus are strongly associated with coronary artery disease (CAD). RATIONALE AND PURPOSE OF THE STUDY: In the present study, the relationship of rs3088440 (G > A) in cyclin-dependent kinase inhibitor 2A (CDKN2A) gene site with the presence of coronary artery disease (CAD) and its severity was evaluated in an Iranian population. METHODS AND RESULTS: The presence of rs3088440 (G > A) genotypes was assessed by polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) technique in 324 CAD patients and 148 normal controls. rs3088440 (G > A) polymorphism was associated with increased risk of CAD in the total population (adjusted OR = 1.76, 95% CI = 1.10-2.82; p-value = 0.017) or in women (adjusted OR = 2.96, 95% CI = 1.34-6.55; p-value = 0.007), but not in the men (adjusted OR = 1.35, 95% CI = 0.70-2.6; p-value = 0.368). CONCLUSIONS: Our findings suggest that the presence of rs3088440 (G > A) is potentially linked with the risk of CAD and its severity in whole study subjects or in women only, independent of CAD risk factors.


Assuntos
Doença da Artéria Coronariana/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Idoso , Alelos , Estudos de Casos e Controles , Cromossomos Humanos Par 9/genética , Doença da Artéria Coronariana/epidemiologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Frequência do Gene/genética , Genes p16/fisiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Irã (Geográfico)/epidemiologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco
17.
Food Chem Toxicol ; 154: 112322, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34111487

RESUMO

Diethylhexyl phthalate (DEHP) is one of the most important derivatives of phthalate that has devastating effects on nervous system function. In this study, the effects of exposure with low doses of DEHP during pregnancy and lactation periods have been evaluated in rat's puppies. DEHP at doses 5, 40, 400 µg/kg/day and 300 mg/kg/day was given to mothers by gavage during pregnancy and lactation. The spatial and working memories were evaluated by Morris water maze test and Y maze, respectively. Oxidative stress levels were measured by biochemical tests. Histopathology of hippocampal tissue was assessed using hematoxylin and eosin, Nissl staining, and immunohistofluorescence in 60-days-old puppies. Behavioral data showed that low doses of DEHP decreased the working and spatial memories of male rats. Increased oxidative stress and decreased antioxidant activity were also observed in the hippocampus of rats which received the low doses of DEHP. However, neuronal damage, inflammation, and astrocyte activation were not significantly increased in the hippocampus of rats. Overall, exposure of mothers to low doses of DEHP during pregnancy and lactation cause behavioral deficits, especially in male newborn. The destructive effects of low doses of DEHP might be mediated through increased levels of oxidative stress in the brain.


Assuntos
Comportamento Animal/efeitos dos fármacos , Aleitamento Materno , Dietilexilftalato/toxicidade , Hipocampo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plastificantes/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Animais , Morte Celular/efeitos dos fármacos , Dietilexilftalato/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Hipocampo/metabolismo , Tamanho da Ninhada de Vivíparos , Plastificantes/administração & dosagem , Gravidez , Ratos , Ratos Wistar
18.
Avicenna J Phytomed ; 11(3): 210-217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046317

RESUMO

OBJECTIVE: In this study, the impact of arbutin was examined in a gentamicin (GM)-induced nephrotoxicity model. MATERIALS AND METHODS: Forty adult male Wistar rats were randomly assigned to five groups including control group; GM group, and three groups of GM+arbutin (25, 50 and 75 mg/kg). One day after the last injection of GM, creatinine, urea, carbonyl, thiobarbituric acid-reacting substance (TBARs), ferric reducing antioxidant power (FRAP) and 8-hydroxyguanosine levels were assessed in serum samples. Left and right kidneys were used for biochemical assays and histological evaluation, respectively. RESULTS: Our data showed that the FRAP level (p<0.05), urea (p<0.001), creatinine (p<0.001), and 8-hydroxyguanosine (p<0.001) levels of serum samples, were increased in GM-treated rats compared to the controls. The serum levels of TBARS (p<0.001) and carbonyl increased in serum and renal tissue (p<0.001) of GM-treated animals. Conversely, arbutin attenuated serum creatinine, urea and 8-hydroxyguanosine, and TBARS (p<0.001). Administration of arbutin significantly decreased carbonyl levels in serum and renal tissue samples (p<0.001). Furthermore, the levels of FRAP increased in the serum (p<0.01) and renal tissue samples (p<0.001) of arbutin-treated animals. Histological staining showed that arbutin significantly inhibits kidney damages. CONCLUSION: Our data suggest that arbutin attenuates GM-induced nephrotoxicity through its free radicals-scavenging activity.

19.
Biol Trace Elem Res ; 199(11): 4193-4204, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33400154

RESUMO

Maternal immune activation (MIA) model has been profoundly described as a suitable approach to study the pathophysiological mechanisms of neuropsychiatric disorders, including schizophrenia. Our previous study revealed that prenatal exposure to lipopolysaccharide (LPS) induced working memory impairments in only male offspring. Based on the putative role of prefrontal cortex (PFC) in working memory process, the current study was conducted to examine the long-lasting effect of LPS-induced MIA on several neuroinflammatory mediators in the PFC of adult male pups. We also investigated whether maternal zinc supplementation can alleviate LPS-induced alterations in this region. Pregnant rats received intraperitoneal injections of either LPS (0.5 mg/kg) or saline on gestation days 15/16 and supplemented with ZnSO4 (30 mg/kg) throughout pregnancy. At postnatal day 60, the density of both microglia and astrocyte cells and the expression levels of IL-6, IL-1ß, iNOS, TNF-α, NF-κB, and GFAP were evaluated in the PFC of male pups. Although maternal LPS treatment increased microglia and astrocyte density, number of neurons in the PFC of adult offspring remained unchanged. These findings were accompanied by the exacerbated mRNA levels of IL-6, IL-1ß, iNOS, TNF-α, NF-κB, and GFAP as well. Conversely, prenatal zinc supplementation alleviated the mentioned alterations induced by LPS. These findings support the idea that the deleterious effects of prenatal LPS exposure could be attenuated by zinc supplementation during pregnancy. It is of interest to suggest early therapeutic intervention as a valuable approach to prevent neurodevelopmental deficits, following maternal infection. Schematic diagram describing the experimental timeline. On gestation days (GD) 15 and 16, pregnant dams were administered with intraperitoneal injections of either LPS (0.5 mg/kg) or vehicle and supplemented with ZnSO4 (30 mg/kg) throughout pregnancy by gavage. The resulting offspring were submitted to qPCR, immunostaining, and morphological analysis at PND 60. Maternal zinc supplementation alleviated increased expression levels of inflammatory mediators and microglia and astrocyte density induced by LPS in the PFC of treated offspring. PND postnatal day, PFC prefrontal cortex.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Esquizofrenia , Animais , Suplementos Nutricionais , Feminino , Lipopolissacarídeos/toxicidade , Masculino , Gravidez , Ratos , Zinco
20.
J Med Virol ; 93(3): 1314-1319, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33044760

RESUMO

Recent evidence suggested that neurological manifestations occur in patients with a severe form of coronavirus disease (COVID-19). On the basis of this issue, neurologists are very concerned about patients with neurological disorders, especially multiple sclerosis (MS), as consumers of immunosuppressive or immune-modulating drugs. Therefore, the administration of proper disease-modifying therapies (DMTs) in MS patients is critical during the pandemic status. On the one hand, both the autoimmune diseases and immunosuppressive drugs increase the risk of infection due to impairment in the immune system, and on the other hand, postponing of MS treatment has serious consequences on the central nervous system. In the present study, we discussed recent literature about the effect of DMTs administration on the severity of COVID-19 in the MS patients. Overall, it seems that DMTs do not provoke the COVID-19 infection in the MS patients by declining immune responses and cytokine storm. However, as a precaution, the supervision of a neurologist is highly recommended.


Assuntos
COVID-19/patologia , Fatores Imunológicos/uso terapêutico , Imunossupressores/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Animais , COVID-19/imunologia , Humanos , Fatores Imunológicos/imunologia , Imunossupressores/imunologia , Esclerose Múltipla/imunologia , Pandemias/prevenção & controle , SARS-CoV-2/imunologia , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...