Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(9): e0257063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34473767

RESUMO

Great gerbil (Rhombomys opimus Lichtenstein, 1823) is distributed in Central Asia and some parts of the Middle East. It is widely found in central and northeast parts of Iran with two distinct genetic lineages: R. o. sodalis in the northern slopes of the Elburz Mountains and R. o. sargadensis in the southern slopes. This large rodent acts as the main host of natural focal diseases. No study has surveyed the ecological niche of the lineages and how their distribution might be influenced by different climatic variables. To examine the distribution patterns of this murid rodent, we aimed to determine the habitat preferences and effects of environmental variables on the ecological niche. Using a species distribution approach for modeling of regional niche specialization, suitable habitats predicted for R. o. sodalis were mainly located in Golestan province in northern Iran, along the northern slope of Elburz, while R. o. sargadensis, showed great potential distribution along the southern slope of Elburz and around the Kavir Desert and the Lut Desert. Despite the widest potential distribution of R. o. sargadensis from northeast to northwest and through Central Iran, the geographic range of R. o. sodalis was smaller and mostly confined to Golestan province. The results support the presence of the two genetic lineages of Rhombomys in Iran and confirm that there is no significant niche overlap between the two subspecies. Furthermore, it provided several perspectives for future taxonomic studies and prevention hygiene programs for public health.


Assuntos
Ecossistema , Gerbillinae/genética , Modelos Biológicos , Filogenia , Animais , Geografia , Irã (Geográfico)
2.
J Arthropod Borne Dis ; 15(1): 1-20, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34277853

RESUMO

BACKGROUND: Among the blood-sucking insects, Anopheles mosquitoes have a very special position, because they transmit parasites of the genus Plasmodium, which cause malaria as one of the main vector-borne disease worldwide. The aim of this review study was to evaluate utility of complete mitochondrial genomes in phylogenetic classification of the species of Anopheles. METHODS: The complete mitochondrial genome sequences belonging to 28 species of the genus Anopheles (n=32) were downloaded from NCBI. The phylogenetic trees were constructed using the ML, NJ, ME, and Bayesian inference methods. RESULTS: In general, the results of the present survey revealed that the complete mitochondrial genomes act very accurately in recognition of the taxonomic and phylogenetic status of these species and provide a higher level of support than those based on individual or partial mitochondrial genes so that by using them, we can meticulously reconstruct and modify Anopheles classification. CONCLUSION: Understanding the taxonomic position of Anopheles, can be a very effective step in better planning for controlling these malaria vectors in the world and will improve our knowledge of their evolutionary biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...