Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39130195

RESUMO

Advances in spatially-resolved transcriptomics (SRT) technologies have propelled the development of new computational analysis methods to unlock biological insights. As the cost of generating these data decreases, these technologies provide an exciting opportunity to create large-scale atlases that integrate SRT data across multiple tissues, individuals, species, or phenotypes to perform population-level analyses. Here, we describe unique challenges of varying spatial resolutions in SRT data, as well as highlight the opportunities for standardized preprocessing methods along with computational algorithms amenable to atlas-scale datasets leading to improved sensitivity and reproducibility in the future.

3.
Sci Adv ; 10(25): eadk8501, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905342

RESUMO

Single-cell technology has allowed researchers to probe tissue complexity and dynamics at unprecedented depth in health and disease. However, the generation of high-dimensionality single-cell atlases and virtual three-dimensional tissues requires integrated reference maps that harmonize disparate experimental designs, analytical pipelines, and taxonomies. Here, we present a comprehensive single-cell transcriptome integration map of cardiac fibrosis, which underpins pathophysiology in most cardiovascular diseases. Our findings reveal similarity between cardiac fibroblast (CF) identities and dynamics in ischemic versus pressure overload models of cardiomyopathy. We also describe timelines for commitment of activated CFs to proliferation and myofibrogenesis, profibrotic and antifibrotic polarization of myofibroblasts and matrifibrocytes, and CF conservation across mouse and human healthy and diseased hearts. These insights have the potential to inform knowledge-based therapies.


Assuntos
Fibroblastos , Fibrose , Análise de Célula Única , Transcriptoma , Animais , Análise de Célula Única/métodos , Humanos , Fibroblastos/metabolismo , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Perfilação da Expressão Gênica
5.
Nat Commun ; 15(1): 509, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218939

RESUMO

Recent advances in subcellular imaging transcriptomics platforms have enabled high-resolution spatial mapping of gene expression, while also introducing significant analytical challenges in accurately identifying cells and assigning transcripts. Existing methods grapple with cell segmentation, frequently leading to fragmented cells or oversized cells that capture contaminated expression. To this end, we present BIDCell, a self-supervised deep learning-based framework with biologically-informed loss functions that learn relationships between spatially resolved gene expression and cell morphology. BIDCell incorporates cell-type data, including single-cell transcriptomics data from public repositories, with cell morphology information. Using a comprehensive evaluation framework consisting of metrics in five complementary categories for cell segmentation performance, we demonstrate that BIDCell outperforms other state-of-the-art methods according to many metrics across a variety of tissue types and technology platforms. Our findings underscore the potential of BIDCell to significantly enhance single-cell spatial expression analyses, enabling great potential in biological discovery.


Assuntos
Benchmarking , Perfilação da Expressão Gênica , Eritrócitos Anormais , Teste de Histocompatibilidade , Aprendizado de Máquina Supervisionado
6.
F1000Res ; 12: 261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38434622

RESUMO

Background: Globally, scientists now have the ability to generate a vast amount of high throughput biomedical data that carry critical information for important clinical and public health applications. This data revolution in biology is now creating a plethora of new single-cell datasets. Concurrently, there have been significant methodological advances in single-cell research. Integrating these two resources, creating tailor-made, efficient, and purpose-specific data analysis approaches can assist in accelerating scientific discovery. Methods: We developed a series of living workshops for building data stories, using Single-cell data integrative analysis (scdney). scdney is a wrapper package with a collection of single-cell analysis R packages incorporating data integration, cell type annotation, higher order testing and more. Results: Here, we illustrate two specific workshops. The first workshop examines how to characterise the identity and/or state of cells and the relationship between them, known as phenotyping. The second workshop focuses on extracting higher-order features from cells to predict disease progression. Conclusions: Through these workshops, we not only showcase current solutions, but also highlight critical thinking points. In particular, we highlight the Thinking Process Template that provides a structured framework for the decision-making process behind such single-cell analyses. Furthermore, our workshop will incorporate dynamic contributions from the community in a collaborative learning approach, thus the term 'living'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA