Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 43(19): 4558-4561, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30272682

RESUMO

The recent demonstration of the GeSn laser opened a promising route towards the monolithic integration of light sources on the Si platform. A GeSn laser with higher Sn content is highly desirable to enhance the emission efficiency and to cover longer wavelength. This Letter reports optically pumped edge-emitting GeSn lasers operating at 3 µm, whose device structure featured Sn compositionally graded with a maximum Sn content of 22.3%. By using a 1950-nm laser pumping in comparison with a 1064-nm pumping, the local heating and quantum defect were effectively reduced, which improved laser performance in terms of higher maximum lasing temperature and lower threshold.

2.
Opt Lett ; 42(3): 387-390, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28146483

RESUMO

A SiGeSn/GeSn/SiGeSn single quantum well structure was grown using an industry standard chemical vapor deposition reactor with low-cost commercially available precursors. The material characterization revealed the precisely controlled material growth process. Temperature-dependent photoluminescence spectra were correlated with band structure calculation for a structure accurately determined by high-resolution x-ray diffraction and transmission electron microscopy. Based on the result, a systematic study of SiGeSn and GeSn bandgap energy separation and barrier heights versus material compositions and strain was conducted, leading to a practical design of a type-I direct bandgap quantum well.

3.
Opt Express ; 22(13): 15639-52, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24977823

RESUMO

The GeSn direct gap material system, with Si complementary-metal-oxide semiconductor (CMOS) compatibility, presents a promising solution for direct incorporation of focal plane arrays with short wave infrared detection on Si. A temperature dependence study of GeSn photoconductors with 0.9, 3.2, and 7.0% Sn was conducted using both electrical and optical characterizations from 300 to 77 K. The GeSn layers were grown on Si substrates using a commercially available chemical vapor deposition reactor in a Si CMOS compatible process. Carrier activation energies due to ionization and trap states are extracted from the temperature dependent dark I-V characteristics. The temperature dependent spectral response of each photoconductor was measured, and a maximum long wavelength response to 2.1 µm was observed for the 7.0% Sn sample. The DC responsivity measured at 1.55 µm showed around two orders of magnitude improvement at reduced temperatures for all samples compared to room temperature measurements. The noise current and temperature dependent specific detectivity (D*) were also measured for each sample at 1.55 µm, and a maximum D* value of 1 × 10(9) cm·âˆšHz/W was observed at 77 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...