Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 72(6): 3814-25, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16751485

RESUMO

The siderophore and virulence factor yersiniabactin is produced by Pseudomonas syringae. Yersiniabactin was originally detected by high-pressure liquid chromatography (HPLC); commonly used PCR tests proved ineffective. Yersiniabactin production in P. syringae correlated with the possession of irp1 located in a predicted yersiniabactin locus. Three similarly divergent yersiniabactin locus groups were determined: the Yersinia pestis group, the P. syringae group, and the Photorhabdus luminescens group; yersiniabactin locus organization is similar in P. syringae and P. luminescens. In P. syringae pv. tomato DC3000, the locus has a high GC content (63.4% compared with 58.4% for the chromosome and 60.1% and 60.7% for adjacent regions) but it lacks high-pathogenicity-island features, such as the insertion in a tRNA locus, the integrase, and insertion sequence elements. In P. syringae pv. tomato DC3000 and pv. phaseolicola 1448A, the locus lies between homologues of Psyr_2284 and Psyr_2285 of P. syringae pv. syringae B728a, which lacks the locus. Among tested pseudomonads, a PCR test specific to two yersiniabactin locus groups detected a locus in genospecies 3, 7, and 8 of P. syringae, and DNA hybridization within P. syringae also detected a locus in the pathovars phaseolicola and glycinea. The PCR and HPLC methods enabled analysis of nonpathogenic Escherichia coli. HPLC-proven yersiniabactin-producing E. coli lacked modifications found in irp1 and irp2 in the human pathogen CFT073, and it is not clear whether CFT073 produces yersiniabactin. The study provides clues about the evolution and dispersion of yersiniabactin genes. It describes methods to detect and study yersiniabactin producers, even where genes have evolved.


Assuntos
Escherichia coli/metabolismo , Evolução Molecular , Fenóis/metabolismo , Pseudomonas syringae/metabolismo , Tiazóis/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/metabolismo , Cromatografia Líquida de Alta Pressão , Escherichia coli/genética , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Pseudomonas syringae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
2.
Z Naturforsch C J Biosci ; 59(9-10): 613-8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15540590

RESUMO

The structure elucidation of the cyclic (lactonic) forms of the pyoverdins with a succinamide side chain originally produced by the closely related species Pseudomonas syringae and P. cichorii is reported. Mass spectrometry and nuclear magnetic resonance analyses as well as the determination of the configuration of the amino acids after degradation indicate that these two pyoverdins differ only by the replacement of the first in-chain serine by glycine. The pyoverdins of P. syringae and P. cichorii and the dihydropyoverdin of P. syringae can be used by both species as siderophores.


Assuntos
Oligopeptídeos/isolamento & purificação , Pseudomonas syringae/química , Pseudomonas/química , Sideróforos/isolamento & purificação , Sequência de Aminoácidos , Aminoácidos/análise , Espectroscopia de Ressonância Magnética , Peso Molecular , Oligopeptídeos/química , Conformação Proteica , Sideróforos/química
3.
Appl Environ Microbiol ; 69(2): 1143-53, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12571041

RESUMO

The relationship of pyoverdins produced by 41 pathovars of Pseudomonas syringae and by phytopathogenic Pseudomonas species was investigated. A high-performance liquid chromatography method for analyzing the culture medium proved to be superior to isoelectric focusing for detecting pyoverdin production, for differentiating slightly different pyoverdins, and for differentiating atypical from typical Fe(III)-chelated pyoverdins. Nonfluorescent strains were found in Pseudomonas amygdali, Pseudomonas meliae, Pseudomonas fuscovaginae, and P. syringae. Pseudomonas agarici and Pseudomonas marginalis produced typical pyoverdins. Among the arginine dihydrolase-negative fluorescent Pseudomonas species, spectral, amino acid, and mass spectrometry analyses underscored for the first time the clear similarities among the pyoverdins produced by related species. Within this group, the oxidase-negative species Pseudomonas viridiflava and Pseudomonas ficuserectae and the pathovars of P. syringae produced the same atypical pyoverdin, whereas the oxidase-positive species Pseudomonas cichorii produced a similar atypical pyoverdin that contained a glycine instead of a serine. The more distantly related species Pseudomonas asplenii and Pseudomonas fuscovaginae both produced a less similar atypical pyoverdin. The spectral characteristics of Fe(III)-chelated atypical pyoverdins at pH 7.0 were related to the presence of two beta-hydroxyaspartic acids as iron ligands, whereas in typical pyoverdins one of the ligands is always ornithine based. The peptide chain influenced the chelation of iron more in atypical pyoverdins. Our results demonstrated that there is relative pyoverdin conservation in the amino acids involved in iron chelation and that there is faster evolution of the other amino acids, highlighting the usefulness of pyoverdins in systematics and in identification.


Assuntos
Oligopeptídeos , Pigmentos Biológicos/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas/classificação , Sideróforos/metabolismo , Aminoácidos/análise , Técnicas de Tipagem Bacteriana , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Pigmentos Biológicos/química , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/patogenicidade , Sideróforos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA