Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Discov Today ; 29(4): 103945, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460568

RESUMO

Design-Make-Test-Analyse (DMTA) is the discovery cycle through which molecules are designed, synthesised, and assayed to produce data that in turn are analysed to inform the next iteration. The process is repeated until viable drug candidates are identified, often requiring many cycles before reaching a sweet spot. The advent of artificial intelligence (AI) and cloud computing presents an opportunity to innovate drug discovery to reduce the number of cycles needed to yield a candidate. Here, we present the Predictive Insight Platform (PIP), a cloud-native modelling platform developed at AstraZeneca. The impact of PIP in each step of DMTA, as well as its architecture, integration, and usage, are discussed and used to provide insights into the future of drug discovery.


Assuntos
Inteligência Artificial , Bioensaio , Descoberta de Drogas
2.
Mol Inform ; 43(4): e202300183, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38258328

RESUMO

De novo design has been a hotly pursued topic for many years. Most recent developments have involved the use of deep learning methods for generative molecular design. Despite increasing levels of algorithmic sophistication, the design of molecules that are synthetically accessible remains a major challenge. Reaction-based de novo design takes a conceptually simpler approach and aims to address synthesisability directly by mimicking synthetic chemistry and driving structural transformations by known reactions that are applied in a stepwise manner. However, the use of a small number of hand-coded transformations restricts the chemical space that can be accessed and there are few examples in the literature where molecules and their synthetic routes have been designed and executed successfully. Here we describe the application of reaction-based de novo design to the design of synthetically accessible and biologically active compounds as proof-of-concept of our reaction vector-based software. Reaction vectors are derived automatically from known reactions and allow access to a wide region of synthetically accessible chemical space. The design was aimed at producing molecules that are active against PARP1 and which have improved brain penetration properties compared to existing PARP1 inhibitors. We synthesised a selection of the designed molecules according to the provided synthetic routes and tested them experimentally. The results demonstrate that reaction vectors can be applied to the design of novel molecules of biological relevance that are also synthetically accessible.


Assuntos
Desenho de Fármacos , Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Humanos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Software
3.
Sci Rep ; 13(1): 4143, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914670

RESUMO

Hydrogen bonding is an interaction of great importance in drug discovery and development as it may significantly affect chemical and biological processes including the interaction of small molecules with other molecules, proteins, and membranes. In particular, hydrogen bonding can impact drug-like properties such as target affinity and oral availability which are critical to developing effective pharmaceuticals, and therefore, numerous methods for the calculation of properties such as hydrogen-bond strengths, free energy of hydration, or water solubility have been proposed over time. However, the accessibility to efficient methods for the predictions of such properties is still limited. Here, we present the development of Jazzy, an open-source tool for the prediction of hydrogen-bond strengths and free energies of hydration of small molecules. Jazzy also allows the visualisation of hydrogen-bond strengths with atomistic resolution to support the design of compounds with desired properties and the interpretation of existing data. The tool is described in its implementation, parameter fitting, and validation against two data sets of experimental hydration free energies. Jazzy is also applied against two chemical series of bioactive compounds to show that hydrogen-bond strengths can be used to understand their structure-activity relationships. Results from the validations highlight the strengths and limitations of Jazzy, and suggest its suitability for interactive design, screening, and machine-learning featurisation.

4.
J Chem Inf Model ; 63(1): 187-196, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36573842

RESUMO

The isoelectric point (pI) is a fundamental physicochemical property of peptides and proteins. It is widely used to steer design away from low solubility and aggregation and guide peptide separation and purification. Experimental measurements of pI can be replaced by calculations knowing the ionizable groups of peptides and their corresponding pKa values. Different pKa sets are published in the literature for natural amino acids, however, they are insufficient to describe synthetically modified peptides, complex peptides of natural origin, and peptides conjugated with structures of other modalities. Noncanonical modifications (nCAAs) are ignored in the conventional sequence-based pI calculations, therefore producing large errors in their pI predictions. In this work, we describe a pI calculation method that uses the chemical structure as an input, automatically identifies ionizable groups of nCAAs and other fragments, and performs pKa predictions for them. The method is validated on a curated set of experimental measures on 29 modified and 119093 natural peptides, providing an improvement of R2 from 0.74 to 0.95 and 0.96 against the conventional sequence-based approach for modified peptides for the two studied pKa prediction tools, ACDlabs and pKaMatcher, correspondingly. The method is available in the form of an open source Python library at https://github.com/AstraZeneca/peptide-tools, which can be integrated into other proprietary and free software packages. We anticipate that the pI calculation tool may facilitate optimization and purification activities across various application domains of peptides, including the development of biopharmaceuticals.


Assuntos
Peptídeos , Proteínas , Ponto Isoelétrico , Peptídeos/química , Proteínas/química , Aminoácidos/química , Solubilidade
5.
Mol Inform ; 41(4): e2100207, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34750989

RESUMO

Reaction-based de novo design refers to the generation of synthetically accessible molecules using transformation rules extracted from known reactions in the literature. In this context, we have previously described the extraction of reaction vectors from a reactions database and their coupling with a structure generation algorithm for the generation of novel molecules from a starting material. An issue when designing molecules from a starting material is the combinatorial explosion of possible product molecules that can be generated, especially for multistep syntheses. Here, we present the development of RENATE, a reaction-based de novo design tool, which is based on a pseudo-retrosynthetic fragmentation of a reference ligand and an inside-out approach to de novo design. The reference ligand is fragmented; each fragment is used to search for similar fragments as building blocks; the building blocks are combined into products using reaction vectors; and a synthetic route is suggested for each product molecule. The RENATE methodology is presented followed by a retrospective validation to recreate a set of approved drugs. Results show that RENATE can generate very similar or even identical structures to the corresponding input drugs, hence validating the fragmentation, search, and design heuristics implemented in the tool.


Assuntos
Algoritmos , Ligantes , Estudos Retrospectivos
6.
J Comput Aided Mol Des ; 34(7): 783-803, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32112286

RESUMO

Reaction-based de novo design refers to the in-silico generation of novel chemical structures by combining reagents using structural transformations derived from known reactions. The driver for using reaction-based transformations is to increase the likelihood of the designed molecules being synthetically accessible. We have previously described a reaction-based de novo design method based on reaction vectors which are transformation rules that are encoded automatically from reaction databases. A limitation of reaction vectors is that they account for structural changes that occur at the core of a reaction only, and they do not consider the presence of competing functionalities that can compromise the reaction outcome. Here, we present the development of a Reaction Class Recommender to enhance the reaction vector framework. The recommender is intended to be used as a filter on the reaction vectors that are applied during de novo design to reduce the combinatorial explosion of in-silico molecules produced while limiting the generated structures to those which are most likely to be synthesisable. The recommender has been validated using an external data set extracted from the recent medicinal chemistry literature and in two simulated de novo design experiments. Results suggest that the use of the recommender drastically reduces the number of solutions explored by the algorithm while preserving the chance of finding relevant solutions and increasing the global synthetic accessibility of the designed molecules.


Assuntos
Desenho de Fármacos , Algoritmos , Técnicas de Química Sintética/métodos , Técnicas de Química Sintética/estatística & dados numéricos , Química Farmacêutica/métodos , Química Farmacêutica/estatística & dados numéricos , Simulação por Computador , Desenho Assistido por Computador , Bases de Dados de Compostos Químicos , Bases de Dados de Produtos Farmacêuticos , Humanos , Aprendizado de Máquina , Bibliotecas de Moléculas Pequenas
7.
J Chem Inf Model ; 59(10): 4167-4187, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31529948

RESUMO

Reaction classification has often been considered an important task for many different applications, and has traditionally been accomplished using hand-coded rule-based approaches. However, the availability of large collections of reactions enables data-driven approaches to be developed. We present the development and validation of a 336-class machine learning-based classification model integrated within a Conformal Prediction (CP) framework to associate reaction class predictions with confidence estimations. We also propose a data-driven approach for "dynamic" reaction fingerprinting to maximize the effectiveness of reaction encoding, as well as developing a novel reaction classification system that organizes labels into four hierarchical levels (SHREC: Sheffield Hierarchical REaction Classification). We show that the performance of the CP augmented model can be improved by defining confidence thresholds to detect predictions that are less likely to be false. For example, the external validation of the model reports 95% of predictions as correct by filtering out less than 15% of the uncertain classifications. The application of the model is demonstrated by classifying two reaction data sets: one extracted from an industrial ELN and the other from the medicinal chemistry literature. We show how confidence estimations and class compositions across different levels of information can be used to gain immediate insights on the nature of reaction collections and hidden relationships between reaction classes.


Assuntos
Química Farmacêutica , Bases de Dados de Compostos Químicos , Aprendizado de Máquina , Modelos Químicos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...