Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Dev Ind Pharm ; 50(5): 470-480, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38625641

RESUMO

OBJECTIVE: Belonging to the class II drugs according to the biopharmaceutics classification system, silibinin (SLB) benefits from high permeability but suffers poor solubility that negatively affects the development of any delivery system. This research aimed to improve SLB solubility by combined use of co-solvency and complexation phenomena. METHODS: Solubility studies were performed using the phase solubility analysis according to the shake-flask method in the presence of ethanol and 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) as a co-solvent and inclusion complexing agent, respectively. SLB release studies from chitosan nanoparticles were carried out in double-wall, diffusion cells using the optimized drug release medium. RESULTS: SLB solubility was mathematically optimized constraining to using the lowest concentrations of ethanol and HP-ß-CD. SLB solubility increased linearly with the increase of HP-ß-CD concentration. The solubility in PBS-ethanol mixtures followed a log-linear model. SLB solubility in the presence of the ethanol co-solvent and HP-ß-CD complexing agent was optimized by adopting a genetic algorithm suggesting the phosphate buffer saline solution supplemented by 6%v/v ethanol and 8 mM HP-ß-CD as an optimized medium. The optimized solution was examined to study SLB release from chitosan nanoparticles (4.5 ± 0.2% drug loading) at 37 °C under static conditions. The sigmoidal release profile of SLB from the particles indicated a combination of erosion and diffusion mechanisms governing drug release from the nanoparticles. CONCLUSION: SLB solubility in a buffered solution supplemented by ethanol co-solvent and HP-ß-CD complexing agent is a function of free drug present in the semi-aqueous media, the drug-ligand binary complex, and the drug/ligand/co-solvent ternary complex.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina , Quitosana , Liberação Controlada de Fármacos , Nanopartículas , Silibina , Solubilidade , Solventes , Silibina/química , Silibina/administração & dosagem , 2-Hidroxipropil-beta-Ciclodextrina/química , Quitosana/química , Nanopartículas/química , Solventes/química , Etanol/química , Silimarina/química , Silimarina/administração & dosagem , Química Farmacêutica/métodos , Portadores de Fármacos/química
2.
J Chem Phys ; 128(7): 071102, 2008 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-18298133

RESUMO

A variational model is developed to compute the coupled density and concentration fields that define the structure of planar interface between equilibrium phases of a compressible polymer solution. The solution of the model in conjunction with the modified Sanchez-Lacombe, with parametric data relevant to real polymer solutions, quantifies the role of compressibility on interfacial thermodynamics and interfacial tension. In particular, it is found that pressure pulses originating from density changes compensate chemical stresses. The interfacial tension, based on Bakker's equation, between equilibrium polymer solution phases and corresponding interfacial thickness exhibits pressure scaling behavior analogous to that predicted with temperature for incompressible polymer solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...