Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921339

RESUMO

Understanding the role of curing conditions on the microstructure and phase chemistry of alkali-activated materials (AAMs) is essential for the evaluation of the long-term performance as well as the optimization of the processing methods for achieving more durable AAMs-based concretes. However, this information cannot be obtained with the common material characterization techniques as they often deliver limited information on the chemical domains and proportions of reaction products. This paper presents the use of PhAse Recognition and Characterization (PARC) software to overcome this obstacle for the first time. A single precursor (ground granulated blast-furnace slag (GBFS)) and a binary precursor (50% GBFS-50% fly ash) alkali-activated paste are investigated. The pastes are prepared and then cured in sealed and unsealed conditions for up to one year. The development of the microstructure and phase chemistry are investigated with PARC, and the obtained results are compared with independent bulk analytical techniques X-ray Powder Fluorescence and X-ray Powder Diffraction. PARC allowed the determination of the type of reaction products and GBFS and FA's spatial distribution and degree of reaction at different curing ages and conditions. The results showed that the pastes react at different rates with the dominant reaction products of Mg-rich gel around GBFS particles, i.e., Ca-Mg-Na-Al-Si, and with Ca-Na-Al-Si gel, in the bulk paste. The microstructure evolution was significantly affected in the unsealed curing conditions due to the Na+ loss. The effect of the curing conditions was more pronounced in the binary system.

2.
Materials (Basel) ; 14(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804905

RESUMO

This paper demonstrates the use of peridynamics and discrete multiphysics to assess micro crack formation and propagation in asphalt at low temperatures and under freezing conditions. Three scenarios are investigated: (a) asphalt without air voids under compressive load, (b) asphalt with air voids and (c) voids filled with freezing water. The first two are computed with Peridynamics, the third with peridynamics combined with discrete multiphysics. The results show that the presence of voids changes the way cracks propagate in the material. In asphalt without voids, cracks tend to propagate at the interface between the mastic and the aggregate. In the presence of voids, they 'jump' from one void to the closest void. Water expansion is modelled by coupling Peridynamics with repulsive forces in the context of Discrete Multiphysics. Freezing water expands against the voids' internal surface, building tension in the material. A network of cracks forms in the asphalt, weakening its mechanical properties. The proposed methodology provides a computational tool for generating samples of 'digital asphalt' that can be tested to assess the asphalt properties under different operating conditions.

3.
Polymers (Basel) ; 12(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266106

RESUMO

The behaviour of reinforced concrete frames with masonry wall infills is influenced a lot by the stiffness and strength difference between the frame and the infill, causing early detrimental damage to the infill or to the critical concrete columns. The paper reports the results from shake table seismic tests on a full-scale reinforced concrete (RC) frame building with modified hollow clay block (orthoblock brick) infill walls, within INMASPOL SERA Horizon 2020 project. The building received innovative resilient protection using Polyurethane Flexible Joints (PUFJs) made of polyurethane resin (PU), applied at the frame-infill interface in different schemes. Further, PUs were used for bonding of glass fibre grids to the weak masonry substrate to form Fibre Reinforced Polyurethanes (FRPUs) as an emergency repair intervention. The test results showed enhancement in the in-plane and out-of-plane infill performance under seismic excitations. The results confirmed remarkable delay of significant infill damages at very high RC frame inter-story drifts as a consequence of the use of PUFJs. Further, the PUFJ protection enabled the resilient repair of the infill even after very high inter-story drift of the structure up to 3.7%. The applied glass FRPU system efficiently protected the damaged infills against collapse under out-of-plane excitation while they restored large part of their in-plane stiffness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...