Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 11: 1154219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090252

RESUMO

Layered zinc hydroxynitrate (ZHN), with the chemical formula Zn5 (OH)8 (NO3)2·2H2O, exhibits a range of special properties such as anion-exchange and intercalation capacity, as well as biocompatibility, making it attractive for a large variety of applications in fields from nanotechnology to healthcare and agriculture. In this study nanocrystalline ZHN doped with 1,000 ppm Mn2+ was prepared by two synthesis methods (coprecipitation and solid state reaction) using similar environment-friendly precursors. The complex morpho-structural [X-ray diffraction, scanning and transmission electron microscopy, textural analysis] and spectroscopic [Fourier transform infrared and electron paramagnetic resonance (EPR)] characterization of the two ZHN nanopowders showed similar crystalline structures with Mn2+ ions localized in the nanocrystals volume, but with differences in their morphological and textural characteristics, as well as in the doping efficiency. ZHN obtained by coprecipitation consists of larger nanoplatelets with more than two times larger specific surface area and pore volume, as well as a dopant concentration than in the ZHN sample obtained by solid state reaction. The thermal stability and the on-set of the structural phase transformation have been investigated at atomic scale with high accuracy by EPR, using Mn2+ as paramagnetic probes. The on-set of the ZHN structural phase transformation toward ZnO was observed by EPR to take place at 110°C and 130°C for the samples prepared by coprecipitation and solid state reaction, respectively, evidencing a manganese induced local decrease of the transformation temperature. Our results contribute to the selection of the most appropriate ZHN synthesis method for specific applications and in the development of new green, cost-effective synthesis routes for Mn2+ doped nano-ZnO.

2.
Nanomaterials (Basel) ; 12(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893534

RESUMO

Special attention has recently been paid to surface-defective titanium dioxide and black TiO2 with advanced optical, electrical, and photocatalytic properties. Synthesis of these materials for photodegradation and mineralization of persistent organic pollutants in water, especially under visible radiation, presents interest from scientific and application points of view. Chemical reduction by heating a TiO2 and NaBH4 mixture at 350 °C successfully introduced Ti3+ defects and oxygen vacancies at the surface of TiO2, with an increase in the photocatalytic degradation of amoxicillin-an antibiotic that is present in wastewater due to its intense use in human and animal medicine. Three TiO2 samples were prepared at different annealing temperatures to control the ratio between anatase and rutile and were subjected to chemical reduction. Electron paramagnetic resonance investigations showed that the formation of surface Ti3+ defects in a high concentration occurred mainly in the anatase sample annealed at 400 °C, contributing to the bandgap reduction from 3.32 eV to 2.92 eV. The reduced band gap enhances visible light absorption and the efficiency of photocatalysis. The nanoparticles of ~90 m2/g specific surface area and 12 nm average size exhibit ~100% efficiency in the degradation of amoxicillin under simulated solar irradiation compared with pristine TiO2. Mineralization of amoxicillin and by-products was over 75% after 48 h irradiation for the anatase sample, where the Ti3+ defects were present in a higher concentration at the catalyst's surface.

3.
Sci Rep ; 10(1): 18062, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093462

RESUMO

The present study concerns the in vitro oxidative stress responses of non-malignant murine cells exposed to surfactant-tailored ZnO nanoparticles (NPs) with distinct morphologies and different levels of manganese doping. Two series of Mn-doped ZnO NPs were obtained by coprecipitation synthesis method, in the presence of either polyvinylpyrrolidone (PVP) or sodium hexametaphosphate (SHMTP). The samples were investigated by powder X-ray Diffraction, Transmission Electron Microscopy, Fourier-Transform Infrared and Electron Paramagnetic Resonance spectroscopic methods, and N2 adsorption-desorption analysis. The observed surfactant-dependent effects concerned: i) particle size and morphology; ii) Mn-doping level; iii) specific surface area and porosity. The relationship between the surfactant dependent characteristics of the Mn-doped ZnO NPs and their in vitro toxicity was assessed by studying the cell viability, intracellular reactive oxygen species (ROS) generation, and DNA fragmentation in NIH3T3 fibroblast cells. The results indicated a positive correlation between the specific surface area and the magnitude of the induced toxicological effects and suggested that Mn-doping exerted a protective effect on cells by diminishing the pro-oxidative action associated with the increase in the specific BET area. The obtained results support the possibility to modulate the in vitro toxicity of ZnO nanomaterials by surfactant-controlled Mn-doping.


Assuntos
Dano ao DNA/efeitos dos fármacos , Fibroblastos , Manganês , Espécies Reativas de Oxigênio/metabolismo , Tensoativos , Óxido de Zinco/farmacologia , Animais , Fragmentação do DNA/efeitos dos fármacos , Fibroblastos/metabolismo , Camundongos , Células NIH 3T3 , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Fosfatos/química , Povidona/química , Propriedades de Superfície , Óxido de Zinco/síntese química , Óxido de Zinco/toxicidade
4.
Appl Microbiol Biotechnol ; 104(14): 6385-6395, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32447439

RESUMO

Melanin is a natural pigment present in almost all biological groups, and is composed of indolic polymers and characterized by black-brown colorization. Furthermore, it is one of the pigments produced by extremophiles including those living in the Antarctic desert, and is mainly involved in their protection from high UV radiation, desiccation, salinity and oxidation. Previous studies have shown that melanized species have an increased capability to survive high level of radiation compared with the non-melanized counterpart. Understanding the molecular composition of fungal melanin could help to understand this peculiar capability. Here, we aimed to characterize the melanin pigment extracted from the Antarctic black fungus Cryomyces antarcticus, which is a good test model for radioprotection researches, by studying its chemical properties and spectral data. Our results demonstrated that, in spite of having a specific type of melanin as the majority of fungi, the fungus possesses the ability to produce both 1,8-dihydroxynaphthalene (DHN) and L 3-4 dihydroxyphenylalanine (L-DOPA) melanins, opening interesting scenarios for the protection role against radiation. Researches on fungal melanin have a huge application in different fields, including radioprotection, bioremediation, and biomedical applications. KEY POINTS: • Isolation and characterization by multidisciplinary approaches of fungal melanins. • Discovery that pathways for producing DOPA and DHN are both active even in its extreme habitat. • Hypothesis supporting the possibility of using melanin pigment for radioprotection.


Assuntos
Ascomicetos/química , Melaninas/química , Regiões Antárticas , Ascomicetos/metabolismo , Cromatografia Líquida de Alta Pressão , Levodopa/química , Levodopa/metabolismo , Espectrometria de Massas , Melaninas/isolamento & purificação , Melaninas/metabolismo , Naftóis/química , Naftóis/metabolismo , Análise Espectral
5.
Phys Chem Chem Phys ; 22(17): 9503-9512, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32319479

RESUMO

The aim of this paper is the study of the thermal behavior of the simonkolleite Zn5(OH)8Cl2·H2O (ZHC) by electron paramagnetic resonance (EPR) spectroscopy, in particular. It is well known that during heating ZHC undergoes a complex transformation which involves several overlapping stages. However, with reference to the data reported on this subject, it can be concluded that there is still an ongoing debate regarding the intermediate stages of this process. The data presented in this study support a simple decomposition process of the ZHC prepared using the precipitation method. The EPR data correlated to the data obtained by other experimental techniques, such as XRD, TEM, SEM and EDX, indicate that during the thermal treatment the ZHC suffers a partial decomposition to ZnO with no intermediate products. After annealing at 500 °C for 1 h, a recombination process of ZHC is observed. Moreover, the kinetics associated to these decomposition steps were determined and the evolution of the paramagnetic centers was also followed and studied. This study offers new information related to the thermal behavior of ZHC, especially regarding the EPR data which is reported for the first time on this subject and material.

6.
Sci Rep ; 9(1): 6894, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053751

RESUMO

The synthesis of semiconductor nanocrystals with controlled doping is highly challenging, as often a significant part of the doping ions are found segregated at nanocrystals surface, even forming secondary phases, rather than incorporated in the core. We have investigated the dopant distribution dynamics under slight changes in the preparation procedure of nanocrystalline ZnO doped with manganese in low concentration by electron paramagnetic resonance spectroscopy, paying attention to the formation of transient secondary phases and their transformation into doped ZnO. The acidification of the starting solution in the co-precipitation synthesis from nitrate precursors lead to the decrease of the Mn2+ ions concentration in the core of the ZnO nanocrystals and their accumulation in minority phases, until ~79% of the Mn2+ ions were localized in a thin disordered shell of zinc hydroxynitrate (ZHN). A lower synthesis temperature resulted in polycrystalline Mn-doped ZHN. Under isochronal annealing up to 250 °C the bulk ZHN and the minority phases from the ZnO samples decomposed into ZnO. The Mn2+ ions distribution in the annealed nanocrystals was significantly altered, varying from a uniform volume distribution to a preferential localization in the outer layers of the nanocrystals. Our results provide a synthesis strategy for tailoring the dopant distribution in ZnO nanocrystals for applications ranging from surface based to ones involving core properties.

7.
Sci Rep ; 5: 14974, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26446442

RESUMO

The compensation of the depolarization field in ferroelectric layers requires the presence of a suitable amount of charges able to follow any variation of the ferroelectric polarization. These can be free carriers or charged defects located in the ferroelectric material or free carriers coming from the electrodes. Here we show that a self-doping phenomenon occurs in epitaxial, tetragonal ferroelectric films of Pb(Zr0.2Ti0.8)O3, consisting in generation of point defects (vacancies) acting as donors/acceptors. These are introducing free carriers that partly compensate the depolarization field occurring in the film. It is found that the concentration of the free carriers introduced by self-doping increases with decreasing the thickness of the ferroelectric layer, reaching values of the order of 10(26) m(-3) for 10 nm thick films. One the other hand, microscopic investigations show that, for thicknesses higher than 50 nm, the 2O/(Ti+Zr+Pb) atomic ratio increases with the thickness of the layers. These results suggest that the ratio between the oxygen and cation vacancies varies with the thickness of the layer in such a way that the net free carrier density is sufficient to efficiently compensate the depolarization field and to preserve the outward direction of the polarization.

8.
ACS Appl Mater Interfaces ; 6(16): 14231-8, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25090453

RESUMO

Magnetic and electrical properties of the nanostructured ZnO films are affected by the nonrandom distribution of impurities in the film due to segregation at grain boundaries (GBs) or extended defects. However, mapping the nature and distribution of the impurities in the film is not trivial. Here we demonstrate a simple, statistically relevant, and nondestructive procedure of quantitative determination of the paramagnetic impurities segregated at the GBs in nanostructured semiconducting and insulating films. From correlated electron paramagnetic resonance and transmission electron microscopy investigations, we determined the localization of trace amounts of Mn(2+) ions, present as native impurities in a ZnO film deposited by magnetron sputtering at room temperature. In the as-deposited ZnO film, the Mn(2+) ions were all localized in nanosized pockets of highly disordered ZnO dispersed between nanocrystalline columns. After the samples had been annealed in air at >400 °C, the size of the intercrystalline region decreased and the diffusion in GBs was activated, resulting in the localization of a portion of the Mn(2+) ions in the peripheral atomic layers of the ZnO columns neighboring the GBs. The proportion of Mn(2+) ions still localized at the GBs after annealing at 600 °C was 37%. The proposed method for the assessment of the presence and nature of impurities and the quantitative evaluation of their distribution in semiconducting and insulating nanostructures is expected to find direct applications in nanotechnology, in the synthesis and quality assurance of thin films for spintronics and opto- and nanoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...