Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 35(8): 3092-3108, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37177987

RESUMO

Complex I (CI) (NADH dehydrogenase), the largest complex involved in mitochondrial oxidative phosphorylation, is composed of nuclear- and mitochondrial-encoded subunits. CI assembly occurs via the sequential addition of subdomains and modules. As CI is prone to oxidative damage, its subunits continually undergo proteolysis and turnover. We describe the mechanism by which CI abundance is regulated in a CI-deficient Arabidopsis thaliana mutant. Using a forward genetic approach, we determined that the CI Q-module domain subunit PSST interacts with FTSH PROTEASE 3 (FTSH3) to mediate the disassembly of the matrix arm domain for proteolysis and turnover as a means of protein quality control. We demonstrated the direct interaction of FTSH3 with PSST and identified the amino acid residues required for this interaction. The ATPase function of FTSH3, rather than its proteolytic activity, is required for this interaction, as its mutation was compensated for by a proteolytically inactive form of FTSH3. This study reveals the mechanistic process by which FTSH3 recognizes CI for degradation at amino acid resolution.


Assuntos
Arabidopsis , Peptídeo Hidrolases , Arabidopsis/genética , Proteólise , Complexo I de Transporte de Elétrons , Aminoácidos
2.
Plant Physiol ; 192(2): 728-747, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36806687

RESUMO

Mitochondria are central organelles for respiration in plants. At the heart of this process is oxidative phosphorylation (OXPHOS) system, which generates ATP required for cellular energetic needs. OXPHOS complexes comprise of multiple subunits that originated from both mitochondrial and nuclear genome, which requires careful orchestration of expression, translation, import, and assembly. Constant exposure to reactive oxygen species due to redox activity also renders OXPHOS subunits to be more prone to oxidative damage, which requires coordination of disassembly and degradation. In this review, we highlight the composition, assembly, and activity of OXPHOS complexes in plants based on recent biochemical and structural studies. We also discuss how plants regulate the biogenesis and turnover of OXPHOS subunits and the importance of OXPHOS in overall plant respiration. Further studies in determining the regulation of biogenesis and activity of OXPHOS will advances the field, especially in understanding plant respiration and its role to plant growth and development.


Assuntos
Mitocôndrias , Fosforilação Oxidativa , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
3.
Biochem Soc Trans ; 50(3): 1119-1132, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35587610

RESUMO

Mitochondrial function relies on the homeostasis and quality control of their proteome, including components of the oxidative phosphorylation (OXPHOS) pathway that generates energy in form of ATP. OXPHOS subunits are under constant exposure to reactive oxygen species due to their oxidation-reduction activities, which consequently make them prone to oxidative damage, misfolding, and aggregation. As a result, quality control mechanisms through turnover and degradation are required for maintaining mitochondrial activity. Degradation of OXPHOS subunits can be achieved through proteomic turnover or modular degradation. In this review, we present multiple protein degradation pathways in plant mitochondria. Specifically, we focus on the intricate turnover of OXPHOS subunits, prior to protein import via cytosolic proteasomal degradation and post import and assembly via intra-mitochondrial proteolysis involving multiple AAA+ proteases. Together, these proteolytic pathways maintain the activity and homeostasis of OXPHOS components.


Assuntos
Fosforilação Oxidativa , Proteômica , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
4.
J Exp Bot ; 73(1): 78-93, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34460901

RESUMO

Plant endosymbiotic organelles such as mitochondria and chloroplasts harbour a wide array of biochemical reactions. As a part of protein homeostasis to maintain organellar activity and stability, unwanted proteins and peptides need to be completely degraded in a stepwise mechanism termed the processing pathway, where at the last stage single amino acids are released by aminopeptidases. Here, we determined the molecular and physiological functions of a prolyl aminopeptidase homologue PAP1 (At2g14260) that is able to release N-terminal proline. Transcript analyses demonstrate that an alternative transcription start site gives rise to two alternative transcripts, generating two in-frame proteins PAP1.1 and PAP1.2. Subcellular localization studies revealed that the longer isoform PAP1.1, which contains a 51 residue N-terminal extension, is exclusively targeted to chloroplasts, while the truncated isoform PAP1.2 is located in the cytosol. Distinct expression patterns in different tissues and developmental stages were observed. Investigations into the physiological role of PAP1 using loss-of-function mutants revealed that PAP1 activity may be involved in proline homeostasis and accumulation, required for pollen development and tolerance to osmotic stress. Enzymatic activity, subcellular location, and expression patterns of PAP1 suggest a role in the chloroplastic peptide processing pathway and proline homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Aminopeptidases/genética , Pólen , Prolina
5.
Plant Physiol ; 186(1): 599-610, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33616659

RESUMO

ATP is generated in mitochondria by oxidative phosphorylation. Complex I (NADH:ubiquinone oxidoreductase or NADH dehydrogenase) is the first multisubunit protein complex of this pathway, oxidizing NADH and transferring electrons to the ubiquinone pool. Typically, Complex I mutants display a slow growth rate compared to wild-type plants. Here, using a forward genetic screen approach for restored growth of a Complex I mutant, we have identified the mitochondrial ATP-dependent metalloprotease, Filamentous Temperature Sensitive H 3 (FTSH3), as a factor that is required for the disassembly of Complex I. An ethyl methanesulfonate-induced mutation in FTSH3, named as rmb1 (restoration of mitochondrial biogenesis 1), restored Complex I abundance and plant growth. Complementation could be achieved with FTSH3 lacking proteolytic activity, suggesting the unfoldase function of FTSH3 has a role in Complex I disassembly. The introduction of the rmb1 to an additional, independent, and extensively characterized Complex I mutant, ndufs4, resulted in similar increases to Complex I abundance and a partial restoration of growth. These results show that disassembly or degradation of Complex I plays a role in determining its steady-state abundance and thus turnover may vary under different conditions.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Complexo I de Transporte de Elétrons/metabolismo
6.
Plant J ; 104(5): 1182-1194, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32920905

RESUMO

Most mitochondrial proteins are synthesised in the cytosol and targeted into the organelle via N-terminal targeting peptides that are cleaved upon import. The free targeting peptide is subsequently processed in a stepwise manner, with single amino acids released as final products. Here, we have characterised a proline-cleaving aminopeptidase in Arabidopsis thaliana, prolyl aminopeptidase-2 (PAP2, At3g61540). Activity assays show that PAP2 has a preferred activity to hydrolyse N-terminal proline. Protein localisation studies revealed that PAP2 is exclusively targeted to mitochondria. Characterisation of pap2 mutants show defective pollen, enhanced dark-induced senescence and increased susceptibility to abiotic stresses, which are likely attributed to a reduced level of accumulated free proline. Taken together, these results demonstrate the role of PAP2 in proline cleavage from mitochondrial peptides and proline homeostasis, which is required for the development of male gametophyte, tolerance to abiotic stresses, and leaf senescence.


Assuntos
Aminopeptidases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Prolina/metabolismo , Estresse Fisiológico/fisiologia , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Aminopeptidases/genética , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Senescência Celular/fisiologia , Escuridão , Proteínas de Fluorescência Verde/genética , Mutação com Perda de Função , Mitocôndrias/metabolismo , Filogenia , Plantas Geneticamente Modificadas , Pólen/fisiologia , Fatores de Transcrição/genética
7.
J Exp Bot ; 70(21): 6005-6018, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31738432

RESUMO

The endosymbiotic origin of the mitochondrion and the subsequent transfer of its genome to the host nucleus has resulted in intricate mechanisms of regulating mitochondrial biogenesis and protein content. The majority of mitochondrial proteins are nuclear encoded and synthesized in the cytosol, thus requiring specialized and dedicated machinery for the correct targeting import and sorting of its proteome. Most proteins targeted to the mitochondria utilize N-terminal targeting signals called presequences that are cleaved upon import. This cleavage is carried out by a variety of peptidases, generating free peptides that can be detrimental to organellar and cellular activity. Research over the last few decades has elucidated a range of mitochondrial peptidases that are involved in the initial removal of the targeting signal and its sequential degradation, allowing for the recovery of single amino acids. The significance of these processing pathways goes beyond presequence degradation after protein import, whereby the deletion of processing peptidases induces plant stress responses, compromises mitochondrial respiratory capability, and alters overall plant growth and development. Here, we review the multitude of plant mitochondrial peptidases that are known to be involved in protein import and processing of targeting signals to detail how their activities can affect organellar protein homeostasis and overall plant growth.


Assuntos
Proteínas Mitocondriais/metabolismo , Peptídeo Hidrolases/metabolismo , Plantas/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Transporte Proteico
8.
Biochem J ; 475(13): 2191-2208, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018142

RESUMO

The majority of the mitochondrial proteome, required to fulfil its diverse range of functions, is cytosolically synthesised and translocated via specialised machinery. The dedicated translocases, receptors, and associated proteins have been characterised in great detail in yeast over the last several decades, yet many of the mechanisms that regulate these processes in higher eukaryotes are still unknown. In this review, we highlight the current knowledge of mitochondrial protein import in plants. Despite the fact that the mechanisms of mitochondrial protein import have remained conserved across species, many unique features have arisen in plants to encompass the developmental, tissue-specific, and stress-responsive regulation in planta. An understanding of unique features and mechanisms in plants provides us with a unique insight into the regulation of mitochondrial biogenesis in higher eukaryotes.


Assuntos
Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas Mitocondriais/genética , Proteínas de Plantas/genética , Plantas/genética , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...