Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Environ Pollut ; 351: 124093, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38703981

RESUMO

Although the negative effects of inorganic UV filters have been documented on several marine organisms, sunscreen products containing such filters are available in the market and proposed as eco-friendly substitutes for harmful, and already banned, organic UV filters (e.g. octinoxate and oxybenzone). In the present study, we investigated the effects of four sunscreen products, labelled by cosmetic companies as "eco-friendly", on the early developmental stages of the sea urchin Paracentrotus lividus, a keystone species occurring in vulnerable coastal habitats. Among sunscreens tested, those containing ZnO and TiO2 or their mix caused severe impacts on sea urchin embryos. We show that inorganic UV filters were incorporated by larvae during their development and, despite the activation of defence strategies (e.g. phagocytosis by coelomocytes), generated anomalies such as skeletal malformations and tissue necrosis. Conversely, the sunscreen product containing only new-generation organic UV filters (e.g. methylene bis-benzotriazolyl tetramethyl, ethylhexyl triazone, butylphenol diethylamino hydroxybenzoyl hexyl benzoate) did not affect sea urchins, thus resulting actually eco-compatible. Our findings expand information on the impact of inorganic UV filters on marine life, corroborate the need to improve the eco-friendliness assessment of sunscreen products and warn of the risk of bioaccumulation and potential biomagnification of inorganic UV filters along the marine food chain.

2.
Neuroimage ; 284: 120444, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37926216

RESUMO

Previous work showed that movements are accompanied by modulation of electroencephalographic (EEG) activity in both beta (13-30 Hz) and gamma (>30 Hz) ranges. The amplitude of beta event-related synchronization (ERS) is not linked to movement characteristics, but progressively increases with motor practice, returning to baseline after a period of rest. Conversely, movement-related gamma ERS amplitude is proportional to movement distance and velocity. Here, high-density EEG was recorded in 51 healthy subjects to investigate whether i) three-hour practice in two learning tasks, one with a motor component and one without, affects gamma ERS amplitude and connectivity during a motor reaching test, and ii) 90-minutes of either sleep or quiet rest have an effect on gamma oscillatory activity. We found that, while gamma ERS was appropriately scaled to the target extent at all testing points, its amplitude decreased after practice, independently of the type of interposed learning, and after both quiet wake and nap, with partial correlations with subjective fatigue scores. During movement execution, connectivity patterns within fronto-parieto-occipital electrodes, over areas associated with attentional networks, decreased after both practice and after 90-minute rest. While confirming the prokinetic nature of movement-related gamma ERS, these findings demonstrated the preservation of gamma ERS scaling to movement velocity with practice, despite constant amplitude reduction. We thus speculate that such decreases, differently from the practice-related increases of beta ERS, are related to reduced attention or working memory mechanisms due to fatigue or a switch of strategy toward automatization of movement execution and do not specifically reflect plasticity phenomena.


Assuntos
Eletroencefalografia , Movimento , Humanos , Aprendizagem
3.
Breast Cancer ; 30(5): 802-809, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37358721

RESUMO

INTRODUCTION: The oncoplastic conservative surgery was developed as a natural evolution of traditional surgery, attempting to improve the therapeutic and aesthetic outcomes where tumor resection could be followed by not-adequate results. Our primary aim is to evaluate how patient satisfaction and quality-of-life after conservative oncoplastic surgery, using BREAST-Q (BCT Module), change pre- and post-operatively. The secondary aim is to compare patient-reported outcome after oncoplastic or traditional conservative surgery. PATIENTS AND METHODS: We enrolled 647 patients who underwent traditional conservative surgery or oncoplastic surgery from January 2020 to December 2022. Only 232 women (35.9%) completed the BREAST-Q questionnaire on a web-based platform, at the preoperative phase and 3 months after treatment. RESULTS: The average score of "Psychosocial well-being" and "Satisfaction with Breasts" 3 months after surgery showed a statistically significant improvement, while the average score for "Physical well-being: Chest" at 3 months showed a worsening compared to the baseline. "Sexual well-being" did not show statistically significant change. A significant difference between the post-operative outcome of oncoplastic surgery and traditional surgery was observed only for Physical well-being (better for traditional surgery). CONCLUSIONS: The study showed significant improvement in patient-reported outcomes 3 months after the surgery, except for physical discomfort that increases especially after oncoplastic surgery. Furthermore, our data, as well as many others, point to the appropriateness of using OCS where there is an effective indication, while the perspective of patients cannot find significant superiority over TCS in any of the areas analyzed.


Assuntos
Neoplasias da Mama , Mamoplastia , Humanos , Feminino , Mastectomia Segmentar/efeitos adversos , Mastectomia Segmentar/métodos , Satisfação do Paciente , Estudos Prospectivos , Qualidade de Vida , Neoplasias da Mama/cirurgia , Mamoplastia/métodos , Satisfação Pessoal , Resultado do Tratamento
4.
Front Neurosci ; 16: 1045715, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507340

RESUMO

Movement-related oscillations in the beta range (from 13 to 30 Hz) have been observed over sensorimotor areas with power decrease (i.e., event-related desynchronization, ERD) during motor planning and execution followed by an increase (i.e., event-related synchronization, ERS) after the movement's end. These phenomena occur during active, passive, imaged, and observed movements. Several electrophysiology studies have used beta ERD and ERS as functional indices of sensorimotor integrity, primarily in diseases affecting the motor system. Recent literature also highlights other characteristics of beta ERD and ERS, implying their role in processes not strictly related to motor function. Here we review studies about movement-related ERD and ERS in diseases characterized by motor dysfunction, including Parkinson's disease, dystonia, stroke, amyotrophic lateral sclerosis, cerebral palsy, and multiple sclerosis. We also review changes of beta ERD and ERS reported in physiological aging, Alzheimer's disease, and schizophrenia, three conditions without overt motor symptoms. The review of these works shows that ERD and ERS abnormalities are present across the spectrum of the examined pathologies as well as development and aging. They further suggest that cognition and movement are tightly related processes that may share common mechanisms regulated by beta modulation. Future studies with a multimodal approach are warranted to understand not only the specific topographical dynamics of movement-related beta modulation but also the general meaning of beta frequency changes occurring in relation to movement and cognitive processes at large. Such an approach will provide the foundation to devise and implement novel therapeutic approaches to neuropsychiatric disorders.

6.
Sci Rep ; 11(1): 17441, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465846

RESUMO

Movement is accompanied by beta power changes over frontal and sensorimotor regions: a decrease during movement (event-related desynchronization, ERD), followed by an increase (event-related synchronization, ERS) after the movement end. We previously found that enhancements of beta modulation (from ERD to ERS) during a reaching test (mov) occur over frontal and left sensorimotor regions after practice in a visuo-motor adaptation task (ROT) but not after visual learning practice. Thus, these enhancements may reflect local cumulative effects of motor learning. Here we verified whether they are triggered by the learning component inherent in ROT or simply by motor practice in a reaching task without such learning (MOT). We found that beta modulation during mov increased over frontal and left areas after three-hour practice of either ROT or MOT. However, the frontal increase was greater after ROT, while the increase over the left area was similar after the two tasks. These findings confirm that motor practice leaves local traces in beta power during a subsequent motor test. As they occur after motor tasks with and without learning, these traces likely express the cost of processes necessary for both usage and engagement of long-term potentiation mechanisms necessary for the learning required by ROT.


Assuntos
Aprendizagem/fisiologia , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
7.
Front Neurosci ; 15: 707828, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335178

RESUMO

We have previously demonstrated that, in rested subjects, extensive practice in a motor learning task increased both electroencephalographic (EEG) theta power in the areas involved in learning and improved the error rate in a motor test that shared similarities with the task. A nap normalized both EEG and performance changes. We now ascertain whether extensive visual declarative learning produces results similar to motor learning. Thus, during the morning, we recorded high-density EEG in well rested young healthy subjects that learned the order of different visual sequence task (VSEQ) for three one-hour blocks. Afterward, a group of subjects took a nap and another rested quietly. Between each VSEQ block, we recorded spontaneous EEG (sEEG) at rest and assessed performance in a motor test and a visual working memory test that shares similarities with VSEQ. We found that after the third block, VSEQ induced local theta power increases in the sEEG over a right temporo-parietal area that was engaged during the task. This local theta increase was preceded by increases in alpha and beta power over the same area and was paralleled by performance decline in the visual working memory test. Only after the nap, VSEQ learning rate improved and performance in the visual working memory test was restored, together with partial normalization of the local sEEG changes. These results suggest that intensive learning, like motor learning, produces local theta power increases, possibly reflecting local neuronal fatigue. Sleep may be necessary to resolve neuronal fatigue and its effects on learning and performance.

8.
Parkinsonism Relat Disord ; 84: 148-154, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33526323

RESUMO

OBJECTIVE: To explore the potential rehabilitative effect of art therapy and its underlying mechanisms in Parkinson's disease (PD). METHODS: Observational study of eighteen patients with PD, followed in a prospective, open-label, exploratory trial. Before and after twenty sessions of art therapy, PD patients were assessed with the UPDRS, Pegboard Test, Timed Up and Go Test (TUG), Beck Depression Inventory (BDI), Modified Fatigue Impact Scale and PROMIS-Self-Efficacy, Montreal Cognitive Assessment, Rey-Osterrieth Complex Figure Test (RCFT), Benton Visual Recognition Test (BVRT), Navon Test, Visual Search, and Stop Signal Task. Eye movements were recorded during the BVRT. Resting-state functional MRI (rs-fMRI) was also performed to assess functional connectivity (FC) changes within the dorsal attention (DAN), executive control (ECN), fronto-occipital (FOC), salience (SAL), primary and secondary visual (V1, V2) brain networks. We also tested fourteen age-matched healthy controls at baseline. RESULTS: At baseline, PD patients showed abnormal visual-cognitive functions and eye movements. Analyses of rs-fMRI showed increased functional connectivity within DAN and ECN in patients compared to controls. Following art therapy, performance improved on Navon test, eye tracking, and UPDRS scores. Rs-fMRI analysis revealed significantly increased FC levels in brain regions within V1 and V2 networks. INTERPRETATION: Art therapy improves overall visual-cognitive skills and visual exploration strategies as well as general motor function in patients with PD. The changes in brain connectivity highlight a functional reorganization of visual networks.


Assuntos
Arteterapia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/reabilitação , Conectoma , Rede Nervosa/fisiopatologia , Reabilitação Neurológica , Doença de Parkinson/fisiopatologia , Doença de Parkinson/reabilitação , Idoso , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Tecnologia de Rastreamento Ocular , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Avaliação de Resultados em Cuidados de Saúde , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem
9.
Sleep ; 44(1)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-32745192

RESUMO

Do brain circuits become fatigued due to intensive neural activity or plasticity? Is sleep necessary for recovery? Well-rested subjects trained extensively in a visuo-motor rotation learning task (ROT) or a visuo-motor task without rotation learning (MOT), followed by sleep or quiet wake. High-density electroencephalography showed that ROT training led to broad increases in EEG power over a frontal cluster of electrodes, with peaks in the theta (mean ± SE: 24% ± 6%, p = 0.0013) and beta ranges (10% ± 3%, p = 0.01). These traces persisted in the spontaneous EEG (sEEG) between sessions (theta: 42% ± 8%, p = 0.0001; beta: 35% ± 7%, p = 0.002) and were accompanied by increased errors in a motor test with kinematic characteristics and neural substrates similar to ROT (81.8% ± 0.8% vs. 68.2% ± 2.3%; two-tailed paired t-test: p = 0.00001; Cohen's d = 1.58), as well as by score increases of subjective task-specific fatigue (4.00 ± 0.39 vs. 5.36 ± 0.39; p = 0.0007; Cohen's d = 0.60). Intensive practice with MOT did not affect theta sEEG or the motor test. A nap, but not quiet wake, induced a local sEEG decrease of theta power by 33% (SE: 8%, p = 0.02), renormalized test performance (70.9% ± 2.9% vs 79.1% ± 2.7%, p = 0.018, Cohen's d = 0.85), and improved learning ability in ROT (adaptation rate: 71.2 ± 1.2 vs. 73.4 ± 0.9, p = 0.024; Cohen's d = 0.60). Thus, sleep is necessary to restore plasticity-induced fatigue and performance.


Assuntos
Eletroencefalografia , Sono , Fadiga/etiologia , Humanos , Aprendizagem , Descanso
10.
IEEE Int Conf Rehabil Robot ; 2019: 1254-1259, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374801

RESUMO

Movement is associated with power changes over sensory-motor areas in different frequency ranges, including beta (15-30 Hz). In fact, beta power starts decreasing before the movement onset (event-related desynchronization, ERD) and rebounds after its end (event-related synchronization, ERS). There is increasing evidence that beta modulation depth (measured as ERD-ERS difference) increases with practice in a planar reaching task, suggesting that this measure may reflect plasticity processes. In the present work, we analyzed beta ERD, ERS and modulation depth in healthy subjects to determine their changes over three regions of interest (ROIs): right and left sensorimotor and frontal areas, during a reaching task with the right arm. We found that ERD, ERS and modulation depth increased with practice with lower values over the right sensory-motor area. Timing of peak ERD and ERS were similar across ROIs, with ERS peak occurring earlier in later sets. Finally, we found that beta ERS of the frontal ROI involved higher beta range (23-29 Hz) than the sensory-motor ROIs (15-18 Hz). Altogether these results suggest that practice in a reaching task is associated with modification of beta power and timing. Additionally, beta ERS may have different functional meaning in the three ROIs, as suggested by the involvement of upper and lower beta bands in the frontal and sensorimotor ROIs, respectively.


Assuntos
Córtex Motor/fisiopatologia , Adulto , Eletroencefalografia , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Adulto Jovem
11.
IEEE Int Conf Rehabil Robot ; 2019: 1260-1265, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374802

RESUMO

Movement is accompanied by modulation of oscillatory activity in different ranges over the sensorimotor areas. This increase is more evident in normal subjects and less in patients with Parkinson's Disease (PD), a disorder associated with deficits in the formation of new motor skills. Here, we investigated whether such EEG changes improved in a group of PD patients, after two different treatments and whether this relates to performance. Subjects underwent either a session of 5 Hz repetitive Transcranial Magnetic Stimulation (rTMS) over the right posterior parietal cortex or a 4-week Multidisciplinary Intensive Rehabilitation Treatment (MIRT). We used a reaching task with visuo-motor adaptation to a rotated display in incremental 10° steps up to 60°. Retention of the learned rotation was tested before and after either intervention over two consecutive days. High-density EEG was recorded throughout the testing. We found that patients adapted their movements to the rotated display similarly to controls, although retention was poorer. Both rTMS and MIRT lead to improvement in retention of the learned rotation. Mean beta modulation levels changed significantly after MIRT and not after rTMS. These results suggest that rTMS produced local improvement reflected in enhanced short-term skill retention; on the other hand, MIRT determined changes across the contralateral sensorimotor area, reflected in beta EEG changes.


Assuntos
Aprendizagem/fisiologia , Doença de Parkinson/reabilitação , Estimulação Transcraniana por Corrente Contínua/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
NPJ Parkinsons Dis ; 5: 13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31286057

RESUMO

Over the last decades, psychophysical and electrophysiological studies in patients and animal models of Parkinson's disease (PD), have consistently revealed a number of visual abnormalities. In particular, specific alterations of contrast sensitivity curves, electroretinogram (ERG), and visual-evoked potentials (VEP), have been attributed to dopaminergic retinal depletion. However, fundamental mechanisms of cortical visual processing, such as normalization or "gain control" computations, have not yet been examined in PD patients. Here, we measured electrophysiological indices of gain control in both space (surround suppression) and time (sensory adaptation) in PD patients based on steady-state VEP (ssVEP). Compared with controls, patients exhibited a significantly higher initial ssVEP amplitude that quickly decayed over time, and greater relative suppression of ssVEP amplitude as a function of surrounding stimulus contrast. Meanwhile, EEG frequency spectra were broadly elevated in patients relative to controls. Thus, contrary to what might be expected given the reduced contrast sensitivity often reported in PD, visual neural responses are not weaker; rather, they are initially larger but undergo an exaggerated degree of spatial and temporal gain control and are embedded within a greater background noise level. These differences may reflect cortical mechanisms that compensate for dysfunctional center-surround interactions at the retinal level.

13.
Neural Plast ; 2019: 1619290, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223306

RESUMO

During movement, modulation of beta power occurs over the sensorimotor areas, with a decrease just before its start (event-related desynchronization, ERD) and a rebound after its end (event-related synchronization, ERS). We have recently found that the depth of ERD-to-ERS modulation increases during practice in a reaching task and the following day decreases to baseline levels. Importantly, the magnitude of the beta modulation increase during practice is highly correlated with the retention of motor skill tested the following day. Together with other evidence, this suggests that the increase of practice-related modulation depth may be the expression of sensorimotor cortex's plasticity. Here, we determine whether the practice-related increase of beta modulation depth is equally present in a group of younger and a group of older subjects during the performance of a 30-minute block of reaching movements. We focused our analyses on two regions of interest (ROIs): the left sensorimotor and the frontal region. Performance indices were significantly different in the two groups, with the movements of older subjects being slower and less accurate. Importantly, both groups presented a similar increase of the practice-related beta modulation depth in both ROIs in the course of the task. Peak latency analysis revealed a progressive delay of the ERS peak that correlated with the total movement time. Altogether, these findings support the notion that the depth of beta modulation in a reaching movement task does not depend on age and confirm previous findings that only ERS peak latency but not ERS magnitude is related to performance indices.


Assuntos
Envelhecimento/fisiologia , Ritmo beta/fisiologia , Encéfalo/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Fatores Etários , Idoso , Fenômenos Biomecânicos/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
Complement Ther Med ; 40: 70-76, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30219472

RESUMO

Though abnormalities of visuospatial function occur in Parkinson's disease, the impact of such deficits on functional independence and psychological wellbeing has been historically under- recognized, and effective treatments for this impairment are unknown. These symptoms can be encountered at any stage of the disease, affecting many activities of daily living, and negatively influencing mood, self-efficacy, independence, and overall quality of life. Furthermore, visuospatial dysfunction has been recently linked to gait impairment and falls, symptoms that are known to be poor prognostic factors. Here, we aim to present an original modality of neurorehabilitation designed to address visuospatial dysfunction and related symptoms in Parkinson's disease, known as "Art Therapy". Art creation relies on sophisticated neurologic mechanisms including shape recognition, motion perception, sensory-motor integration, abstraction, and eye-hand coordination. Furthermore, art therapy may enable subjects with disability to understand their emotions and express them through artistic creation and creative thinking, thus promoting self-awareness, relaxation, confidence and self-efficacy. The potential impact of this intervention on visuospatial dysfunction will be assessed by means of combined clinical, behavioral, gait kinematic, neuroimaging and eye tracking analyses. Potential favorable outcomes may drive further trials validating this novel paradigm of neurorehabilitation.


Assuntos
Arteterapia , Reabilitação Neurológica/métodos , Doença de Parkinson/reabilitação , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Feminino , Fixação Ocular/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Navegação Espacial/fisiologia
15.
Front Hum Neurosci ; 11: 104, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28326029

RESUMO

Recently we found that modulation depth of beta power during movement increases with practice over sensory-motor areas in normal subjects but not in patients with Parkinson's disease (PD). As such changes might reflect use-dependent modifications, we concluded that reduction of beta enhancement in PD represents saturation of cortical plasticity. A few questions remained open: What is the relation between these EEG changes and retention of motor skills? Would a second task exposure restore beta modulation enhancement in PD? Do practice-induced increases of beta modulation occur within each block? We thus recorded EEG in patients with PD and age-matched controls in two consecutive days during a 40-min reaching task divided in fifteen blocks of 56 movements each. The results confirmed that, with practice, beta modulation depth over the contralateral sensory-motor area significantly increased across blocks in controls but not in PD, while performance improved in both groups without significant correlations between behavioral and EEG data. The same changes were seen the following day in both groups. Also, beta modulation increased within each block with similar values in both groups and such increases were partially transferred to the successive block in controls, but not in PD. Retention of performance improvement was present in the controls but not in the patients and correlated with the increase in day 1 modulation depth. Therefore, the lack of practice-related increase beta modulation in PD is likely due to deficient potentiation mechanisms that permit between-block saving of beta power enhancement and trigger mechanisms of memory formation.

16.
Br J Dermatol ; 175(6): 1166-1174, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27214209

RESUMO

Topical and systemic prophylactic measures, which are administered before the development of epidermal growth factor receptor (EGFR)-related acneiform rash, are appropriate interventions to mitigate the intensity of skin toxicity. We have performed a systematic review and meta-analysis to evaluate whether prophylactic antibiotics may reduce the occurrence and severity of anti-EGFR drug-related skin rashes. A systematic review was performed by searching Medline, Scopus, Embase, CINAHL, LILACS, Web of Science and the Cochrane Library from inception until March 2016 for publications regarding the pre-emptive role of antibiotics for EGFR-induced skin rashes. Fixed- or random-effects meta-analyses, according to heterogeneity, were used to summarize odds ratios of skin toxicity with antibiotic use. Of the 827 citations found in the search, 13 studies comprising 1073 patients were included in the analysis. In 12 studies, patients in the prophylactic antibiotic arms had a lower risk of developing a skin rash (odds ratio 0·53, 95% confidence interval 0·39-0·72, P < 0·01) than patients without antibiotic prophylaxis. In particular, moderate-to-severe toxicities (grades 2-4) were reduced by nearly two-thirds (odds ratio 0·36, 95% confidence interval 0·22-0·60, P < 0·01) in 13 studies. This translated to a 26% absolute difference of high-grade skin rash compared with the control arms (from 50% to 24%). The results of this meta-analysis show that the risk of skin rash after treatment with anti-EGFR agents for solid tumours was significantly lower in patients taking prophylaxis with antibiotics than in those who were not. Therefore, taking pre-emptive tetracyclines for several weeks at the start of anti-EGFR treatment can significantly reduce the incidence and severity of cutaneous acneiform rash.


Assuntos
Antibioticoprofilaxia , Toxidermias/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Exantema/tratamento farmacológico , Anticorpos Monoclonais Humanizados/efeitos adversos , Toxidermias/etiologia , Métodos Epidemiológicos , Exantema/induzido quimicamente , Humanos , Fatores de Risco
17.
Neuroimage ; 137: 152-164, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27155129

RESUMO

The neural correlates of memory formation in humans have long been investigated by exposing subjects to diverse material and comparing responses to items later remembered to those forgotten. Tasks requiring memorization of sensory sequences afford unique possibilities for linking neural memorization processes to behavior, because, rather than comparing across different items of varying content, each individual item can be examined across the successive learning states of being initially unknown, newly learned, and eventually, fully known. Sequence learning paradigms have not yet been exploited in this way, however. Here, we analyze the event-related potentials of subjects attempting to memorize sequences of visual locations over several blocks of repeated observation, with respect to pre- and post-block recall tests. Over centro-parietal regions, we observed a rapid P300 component superimposed on a broader positivity, which exhibited distinct modulations across learning states that were replicated in two separate experiments. Consistent with its well-known encoding of surprise, the P300 deflection monotonically decreased over blocks as locations became better learned and hence more expected. In contrast, the broader positivity was especially elevated at the point when a given item was newly learned, i.e., started being successfully recalled. These results implicate the Broad Positivity in endogenously-driven, intentional memory formation, whereas the P300, in processing the current stimulus to the degree that it was previously uncertain, indexes the cumulative knowledge thereby gained. The decreasing surprise/P300 effect significantly predicted learning success both across blocks and across subjects. This presents a new, neural-based means to evaluate learning capabilities independent of verbal reports, which could have considerable value in distinguishing genuine learning disabilities from difficulties to communicate the outcomes of learning, or perceptual impairments, in a range of clinical brain disorders.


Assuntos
Potenciais Evocados P300/fisiologia , Aprendizagem/fisiologia , Rememoração Mental/fisiologia , Priming de Repetição/fisiologia , Memória Espacial/fisiologia , Análise e Desempenho de Tarefas , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Neuroimage ; 129: 367-377, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26812659

RESUMO

Learning leads to rapid microstructural changes in gray (GM) and white (WM) matter. Do these changes continue to accumulate if task training continues, and can they be reverted by sleep? We addressed these questions by combining structural and diffusion weighted MRI and high-density EEG in 16 subjects studied during the physiological sleep/wake cycle, after 12 h and 24 h of intense practice in two different tasks, and after post-training sleep. Compared to baseline wake, 12 h of training led to a decline in cortical mean diffusivity. The decrease became even more significant after 24 h of task practice combined with sleep deprivation. Prolonged practice also resulted in decreased ventricular volume and increased GM and WM subcortical volumes. All changes reverted after recovery sleep. Moreover, these structural alterations predicted cognitive performance at the individual level, suggesting that sleep's ability to counteract performance deficits is linked to its effects on the brain microstructure. The cellular mechanisms that account for the structural effects of sleep are unknown, but they may be linked to its role in promoting the production of cerebrospinal fluid and the decrease in synapse size and strength, as well as to its recently discovered ability to enhance the extracellular space and the clearance of brain metabolites.


Assuntos
Encéfalo/fisiopatologia , Aprendizagem/fisiologia , Privação do Sono/fisiopatologia , Sono/fisiologia , Vigília , Imagem de Difusão por Ressonância Magnética , Eletroencefalografia , Feminino , Substância Cinzenta/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Substância Branca/fisiopatologia , Adulto Jovem
19.
Eur J Pain ; 20(2): 151-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26147660

RESUMO

Pain and sensory abnormalities are present in a large proportion of Parkinson disease (PD) patients and have a significant negative impact in quality of life. It remains undetermined whether pain occurs secondary to motor impairment and to which extent it can be relieved by improvement of motor symptoms. The aim of this review was to examine the current knowledge on the mechanisms behind sensory changes and pain in PD and to assess the modulatory effects of motor treatment on these sensory abnormalities. A comprehensive literature search was performed. We selected studies investigating sensory changes and pain in PD and the effects of levodopa administration and deep brain stimulation (DBS) on these symptoms. PD patients have altered sensory and pain thresholds in the off-medication state. Both levodopa and DBS improve motor symptoms (i.e.: bradykinesia, tremor) and change sensory abnormalities towards normal levels. However, there is no direct correlation between sensory/pain changes and motor improvement, suggesting that motor and non-motor symptoms do not necessarily share the same mechanisms. Whether dopamine and DBS have a real antinociceptive effect or simply a modulatory effect in pain perception remain uncertain. These data may provide useful insights into a mechanism-based approach to pain in PD, pointing out the role of the dopaminergic system in pain perception and the importance of the characterization of different pain syndromes related to PD before specific treatment can be instituted.


Assuntos
Antiparkinsonianos/uso terapêutico , Estimulação Encefálica Profunda , Limiar da Dor/fisiologia , Dor/complicações , Parestesia/complicações , Doença de Parkinson/complicações , Humanos , Dor/fisiopatologia , Manejo da Dor , Parestesia/fisiopatologia , Parestesia/terapia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Qualidade de Vida , Resultado do Tratamento
20.
Neurorehabil Neural Repair ; 30(5): 411-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26253177

RESUMO

Background In a combined animal and human study, we have previously found that a 5-day treatment that enhances cortical plasticity also facilitates brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling and increases activated TrkB and N-methyl-d-aspartate receptor (NMDAR) association in both the cortex and the peripheral lymphocytes. Patients with Parkinson's disease (PD), in general, show decreased cortical plasticity, as demonstrated by electrophysiological and behavioral studies. Here, we test the hypothesis that an exercise program that improves motor function and seems to slow down symptom progression can enhance BDNF-TrkB signaling in lymphocytes. Methods A total of 16 patients with PD underwent a 4-week multidisciplinary intensive rehabilitation treatment (MIRT), which included aerobic training and physical and occupational therapy. Blood was collected before and after 2 and 4 weeks of MIRT. Lymphocytes were isolated to examine BDNF-TrkB signaling induced by incubation with recombinant human BDNF. TrkB signaling complexes, extracellular-signal-regulated kinase-2 and protein-kinase-B were immunoprecipitated; the content of immunocomplexes was determined by Western blotting. Results After MIRT, all patients showed improvement in motor function. TrkB interaction with NMDAR and BDNF-TrkB signaling increased in peripheral lymphocytes at receptor, intracellular mediator, and downstream levels. The decrements in Unified Parkinson's Disease Rating Scale II (UPDRSII) and total scores were significantly correlated with the increases in TrkB signaling at receptor, intracellular mediator, and NMDAR interaction levels. Conclusions The significant correlation between reduced UPDRS scores and the changes in lymphocyte activity suggest that enhanced BDNF-TrkB signaling in lymphocyte and reduced severity of PD symptoms may be related.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Exercício Físico , Linfócitos/metabolismo , Terapia Ocupacional , Doença de Parkinson/reabilitação , Modalidades de Fisioterapia , Receptor trkB/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/patologia , Índice de Gravidade de Doença , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...