Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37688020

RESUMO

The nitrogen-vacancy (NV) centers in diamond have the ability to sense alternating-current (AC) magnetic fields with high spatial resolution. However, the frequency range of AC sensing protocols based on dynamical decoupling (DD) sequences has not been thoroughly explored experimentally. In this work, we aimed to determine the sensitivity of the ac magnetic field as a function of frequency using the sequential readout method. The upper limit at high frequency is clearly determined by Rabi frequency, in line with the expected effect of finite DD-pulse width. In contrast, the lower frequency limit is primarily governed by the duration of optical repolarization rather than the decoherence time (T2) of NV spins. This becomes particularly crucial when the repetition (dwell) time of the sequential readout is fixed to maintain the acquisition bandwidth. The equation we provide successfully describes the tendency in the frequency dependence. In addition, at the near-optimal frequency of 1 MHz, we reached a maximum sensitivity of 229 pT/Hz by employing the XY4-(4) DD sequence.

2.
Sustainability ; 14(19): 1-33, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36406588

RESUMO

Riparian buffer zones (RBZs) have been shown to be effective best management practices (BMPs) in controlling non-point source pollutants in waterbodies. However, the holistic sustainability assessment of individual RBZ designs is lacking. We present a methodology for evaluating the holistic sustainability of RBZ policy scenarios by integrating environmental and economic indicators simulated in three watersheds in the southeastern USA. We developed three unique sets of 40, 32, and 48 RBZ policy scenarios as decision management objectives (DMOs), respectively, in Back Creek, Sycamore Creek, and Greens Mill Run watersheds (Virginia and North Carolina) by combining the RBZ-widths with vegetation types (grass, urban, naturalized, wildlife, three-zone forest, and two-zone forest). We adapted the RBZ-hydrologic and water quality system assessment data of instream water quality parameters (dissolved oxygen, total phosphorus, total nitrogen, total suspended solids-sediment and biochemical oxygen demand) as environmental indicators, recently published by U.S. EPA. We calculated 20-year net present value costs as economic indicators using the RBZ's establishment, maintenance, and opportunity costs data published by the Natural Resources Conservation Service. The mean normalized net present value costs varied by DMOs ranging from 4% (grass RBZ-1.9 m) to 500% (wildlife RBZ-91.4 m) across all watersheds, due primarily to the width and the opportunity costs. The mean normalized environmental indicators varied by watersheds, with the largest change in total nitrogen due to urban RBZs in Back Creek (60-95%), Sycamore Creek (37-91%), and Greens Mill (52-93%). The holistic sustainability assessments revealed the least to most sustainable DMOs for each watershed, from least sustainable wildlife RBZ (score of 0.54), three-zone forest RBZ (0.32), and three-zone forest RBZ (0.62), respectively, for Back Creek, Sycamore Creek, and Greens Mill, to most sustainable urban RBZ (1.00) for all watersheds.

3.
Sustainability ; 13(22): 1-28, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-35059223

RESUMO

Riparian buffer zones (RBZs) provide multiple benefits to watershed ecosystems. We aimed to conduct an extensive sensitivity analysis of the RBZ designs to climate change nutrient and sediment loadings to streams. We designed 135 simulation scenarios starting with the six baselines RBZs (grass, urban, two-zone forest, three-zone forest, wildlife, and naturalized) in three 12-digit Hydrologic Unit Code watersheds within the Albemarle-Pamlico river basin (USA). Using the hydrologic and water quality system (HAWQS), we assessed the sensitivity of the designs to five water quality indicator (WQI) parameters: dissolved oxygen (DO), total phosphorous (TP), total nitrogen (TN), sediment (SD), and biochemical oxygen demand (BD). To understand the climate mitigation potential of RBZs, we identified a subset of future climate change projection models of air temperature and precipitation using EPA's Locating and Selecting Scenarios Online tool. Analyses revealed optimal RBZ designs for the three watersheds. In terms of watershed ecosystem services sustainability, the optimal Urban RBZ in contemporary climate (1983-2018) reduced SD from 61-96%, TN from 34-55%, TP from 9-48%, and BD from 53-99%, and raised DO from 4-10% with respect to No-RBZ in the three watersheds. The late century's (2070-2099) extreme mean annual climate changes significantly increased the projected SD and BD; however, the addition of urban RBZs was projected to offset the climate change reducing SD from 28-94% and BD from 69-93% in the watersheds. All other types of RBZs are also projected to fully mitigate the climate change impacts on WQI parameters except three-zone RBZ.

4.
ACS Appl Mater Interfaces ; 12(43): 48917-48927, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32989982

RESUMO

Generally, a high-temperature postannealing process is required to enhance the photoelectrochemical (PEC) performance of hematite nanorod (NR) photoanodes. However, the thermal annealing time is limited to a short duration as thermal annealing at high temperatures can result in some critical problems, such as conductivity degradation of the fluorine-doped tin oxide film and deformation of the glass substrate. In this study, selective laser processing is introduced for hematite-based PEC cells as an alternative annealing process. The developed laser-induced phase transformation (LIPT) process yields hematite NRs with enhanced optical, chemical, and electrical properties for application in hematite NR-based PEC cells. Owing to its improved properties, the LIPT-processed hematite NR PEC cell exhibits an enhanced water oxidation performance compared to that processed by the conventional annealing process. As the LIPT process is conducted under ambient conditions, it would be an excellent alternative annealing technique for heat-sensitive flexible substrates in the future.

5.
Resour Conserv Recycl ; 146: 536-548, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31274961

RESUMO

This study presents a life cycle assessment (LCA) of a rainwater harvesting (RWH) system and an air-conditioning condensate harvesting (ACH) system for non-potable water reuse. U.S. commercial buildings were reviewed to design rooftop RWH and ACH systems for one to multi-story buildings' non-potable water demand. A life cycle inventory was compiled from the U.S. EPA's database. Nine scenarios were analyzed, including baseline RWH system, ACH system, and combinations of the two systems adapted to 4-story and 19-story commercial buildings in San Francisco and a 4-story building in Washington, DC. Normalization of 11 life cycle impact assessment categories showed that RWH systems in 4-story buildings at both locations outperformed ACH systems (45-80% of ACH impacts) except equivalent in Evaporative Water Consumption. However, San Francisco's ACH system in 19-story building outperformed the RWH system (51-83% of RWH impacts) due to the larger volume of ACH collection, except equivalent in Evaporative Water Consumption. For all three buildings, the combined system preformed equivalently to the better-performing option (≤4-8% impact difference compared to the maximum system). Sensitivity analysis of the volume of water supply and building occupancy showed impact-specific results. Local climatic conditions, rainfall, humidity, water collections and demands are important when designing building-scale RWH and ACH systems. LCA models are transferrable to other locations with variable climatic conditions for decision-making when developing and implementing on-site non-potable water systems.

6.
PLoS One ; 14(5): e0216452, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31075147

RESUMO

Rainwater harvesting (RWH) has been used globally to address water scarcity for various ecosystem uses, including crop irrigation requirements, and to meet the water resource needs of a growing world population. However, the costs, benefits and impacts of alternative crop types and irrigation practices is challenging to evaluate comprehensively. We present an assessment methodology to evaluate the sustainability of agricultural systems as applied to a southeastern U.S. river basin. We utilized detailed, crop-level cultivation information to calculate sustainability indicators (relative to well-water irrigation) at the basin scale (6-digit Hydrologic Unit Codes). 40 design configurations comprising crop types and irrigation practices were evaluated to demonstrate the methodology's robustness. Four RWH designs and four major crops (pasture-grass, soybeans, corn, and cotton) resembling current practices were evaluated, as well as six combined systems (combined RWH and well-water systems) with four globally representative crops (corn, soybeans, wheat, and quinoa). Sustainability scores were calculated by integrating seven life cycle impact indicators (cumulative energy demand, CO2 emission, blue water use, ecotoxicity, eutrophication, human health-cancer, and life cycle costs). At a basin-wide RWH adoption rate of 25%, the benefits, relative to 100% well-water, of the RWH systems irrigating soybeans and supported with well-water (0.4 well-water: 0.6 RWH) provided cumulative energy savings of 39 Peta Joule and reductions in CO2 emission, blue water use, ecotoxicity, eutrophication, and human health-cancer at 1.9 Mt CO2 eq., 6.9 Gm3, 5.7 MCTU, 6.6 kt N eq., and 0.07 CTU, respectively. These benefits increased linearly with RWH scaling variables including the adoption rates, system service life, crop area, and water needs. Our methodology integrates the three pillars of agricultural sustainability specific to rainwater harvesting into a single score. It is applicable to other locations worldwide facing water scarcity by modifying the RWH system design, selecting other crop types, and obtaining appropriate data.


Assuntos
Irrigação Agrícola , Conservação dos Recursos Naturais , Produção Agrícola , Eutrofização , Chuva , Abastecimento de Água , Sudeste dos Estados Unidos
7.
Integr Environ Assess Manag ; 13(5): 821-831, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28304134

RESUMO

We propose a modified eco-efficiency (EE) framework and novel sustainability analysis methodology for green infrastructure (GI) practices used in water resource management. Green infrastructure practices such as rainwater harvesting (RWH), rain gardens, porous pavements, and green roofs are emerging as viable strategies for climate change adaptation. The modified framework includes 4 economic, 11 environmental, and 3 social indicators. Using 6 indicators from the framework, at least 1 from each dimension of sustainability, we demonstrate the methodology to analyze RWH designs. We use life cycle assessment and life cycle cost assessment to calculate the sustainability indicators of 20 design configurations as Decision Management Objectives (DMOs). Five DMOs emerged as relatively more sustainable along the EE analysis Tradeoff Line, and we used Data Envelopment Analysis (DEA), a widely applied statistical approach, to quantify the modified EE measures as DMO sustainability scores. We also addressed the subjectivity and sensitivity analysis requirements of sustainability analysis, and we evaluated the performance of 10 weighting schemes that included classical DEA, equal weights, National Institute of Standards and Technology's stakeholder panel, Eco-Indicator 99, Sustainable Society Foundation's Sustainable Society Index, and 5 derived schemes. We improved upon classical DEA by applying the weighting schemes to identify sustainability scores that ranged from 0.18 to 1.0, avoiding the nonuniqueness problem and revealing the least to most sustainable DMOs. Our methodology provides a more comprehensive view of water resource management and is generally applicable to GI and industrial, environmental, and engineered systems to explore the sustainability space of alternative design configurations. Integr Environ Assess Manag 2017;13:821-831. Published 2017. This article is a US Government work and is in the public domain in the USA. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Mudança Climática , Ecologia
8.
Elementa (Wash D C) ; 5: 9, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31321246

RESUMO

We evaluated the impacts of domestic and agricultural rainwater harvesting (RWH) systems in three watersheds within the Albemarle-Pamlico river basin (southeastern U.S.) using life cycle assessment (LCA) and life cycle cost assessment. Life cycle impact assessment (LCIA) categories included energy demand, fossil fuel, metals, ozone depletion, global warming, acidification, smog, blue and green water use, ecotoxicity, eutrophication, and human health effects. Building upon previous LCAs of near-optimal domestic and agricultural RWH systems in the region, we scaled functional unit LCIA scores for adoption rates of 25%, 50%, 75%, and 100% and compared these to conventional municipal water and well water systems. In addition to investigating watershed-scale impacts of RWH adoption, which few studies have addressed, potential life cycle cost savings due to reduced cumulative energy demand were scaled in each watershed for a more comprehensive analysis. The importance of managing the holistic water balance, including blue water (surface/ground water), green water (rainwater) use, and annual precipitation and their relationship to RWH are also addressed. RWH contributes to water resource sustainability by offsetting surface and ground water consumption and by reducing environmental and human health impacts compared to conventional sources. A watershed-wide RWH adoption rate of 25% has a number of ecological and human health benefits including blue water use reduction ranging from 2-39 Mm3, cumulative energy savings of 12-210 TJ, and reduced global warming potential of 600-10,100 Mg CO2 eq. Potential maximum lifetime energy cost savings were estimated at $5M and $24M corresponding to domestic RWH in Greens Mill and agricultural RWH in Back Creek watersheds.

9.
J Clean Prod ; 151: 74-86, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30147248

RESUMO

Building upon previously published life cycle assessment (LCA) methodologies, we conducted an LCA of a commercial rainwater harvesting (RWH) system and compared it to a municipal water supply (MWS) system adapted to Washington, D.C. Eleven life cycle impact assessment (LCIA) indicators were assessed, with a functional unit of 1 m3 of rainwater and municipal water delivery system for toilets and urinals in a four-story commercial building with 1000 employees. Our assessment shows that the benchmark commercial RWH system outperforms the MWS system in all categories except Ozone Depletion. Sensitivity and performance analyses revealed pump and pumping energy to be key components for most categories, which further guides LCIA tradeoff analysis with respect to energy intensities. Tradeoff analysis revealed that commercial RWH performed better than MWS in Ozone Depletion if RWH's energy intensity was less than that of MWS by at least 0.86 kWh/m3 (249% of the benchmark MWS energy usage at 0.35 kWh/m3). RWH also outperformed MWS in Metal Depletion and Freshwater Withdrawal, regardless of energy intensities, up to 5.51 kWh/m3. An auxiliary commercial RWH system with 50% MWS reduced Ozone Depletion by 19% but showed an increase in all other impacts, which were still lower than benchmark MWS system impacts. Current models are transferrable to commercial RWH installations at other locations.

10.
Dement Geriatr Cogn Disord ; 38(1-2): 89-146, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24714384

RESUMO

BACKGROUND: Behavioral and psychological symptoms of dementia (BPSD) and associated disturbances in Alzheimer's disease (AD) are a source of distress and burden for spouses, professional caregivers, and others with responsibilities for the care of individuals with AD. BPSD with behavioral disturbances are also associated with more rapid institutionalization and increased morbidity and mortality for persons with AD. OBJECTIVES: In this review and commentary, we discuss the history of the development of BPSD and behavioral disturbance assessments, which are distinct from those evaluating cognitive and functional symptoms of AD. In particular, we review the informant-based Behavioral Pathology in Alzheimer's Disease Rating Scale (BEHAVE-AD), the related, potentially more sensitive, BEHAVE-AD Frequency-Weighted Severity Scale (BEHAVE-AD-FW), and the direct subject evaluation-based Empirical BEHAVE-AD Rating Scale (E-BEHAVE-AD). The kinds of medications that alleviate behavioral symptoms on these measures as well as the problems and possibilities for further advances with these medications are discussed. Finally, the importance of distinguishing BPSD and behavioral disturbance remediation in AD from the treatment of cognitive decline and other aspects of AD is emphasized in the context of appropriate assessment methodology. The objective of this paper is to provide a framework for further advances in the treatment of BPSD and associated behavioral disturbances in AD and, consequently, a framework for continuing improvements in the lives of individuals with AD and those who share the burden of the disease with the AD person.


Assuntos
Doença de Alzheimer , Sintomas Comportamentais , Efeitos Psicossociais da Doença , Demência , Psicotrópicos/uso terapêutico , Avaliação de Sintomas/métodos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Doença de Alzheimer/terapia , Sintomas Comportamentais/diagnóstico , Sintomas Comportamentais/terapia , Demência/diagnóstico , Demência/psicologia , Demência/terapia , Gerenciamento Clínico , Humanos , Testes Neuropsicológicos , Avaliação de Resultados da Assistência ao Paciente , Escalas de Graduação Psiquiátrica
11.
Environ Sci Technol ; 48(7): 4069-77, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24605844

RESUMO

To further understanding of the environmental implications of rainwater harvesting and its water savings potential relative to conventional U.S. water delivery infrastructure, we present a method to perform life cycle assessment of domestic rainwater harvesting (DRWH) and agricultural rainwater harvesting (ARWH) systems. We also summarize the design aspects of DRWH and ARWH systems adapted to the Back Creek watershed, Virginia. The baseline design reveals that the pump and pumping electricity are the main components of DRWH and ARWH impacts. For nonpotable uses, the minimal design of DRWH (with shortened distribution distance and no pump) outperforms municipal drinking water in all environmental impact categories except ecotoxicity. The minimal design of ARWH outperforms well water in all impact categories. In terms of watershed sustainability, the two minimal designs reduced environmental impacts, from 58% to 78% energy use and 67% to 88% human health criteria pollutants, as well as avoiding up to 20% blue water (surface/groundwater) losses, compared to municipal drinking water and well water. We address potential environmental and human health impacts of urban and rural RWH systems in the region. The Building for Environmental and Economic Sustainability (BEES) model-based life cycle inventory data were used for this study.


Assuntos
Agricultura , Conservação dos Recursos Naturais/métodos , Características da Família , Chuva , Água , Cidades , Conservação dos Recursos Naturais/economia , Água Potável , Humanos , Virginia , Abastecimento de Água/economia , Poços de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...