Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(12): 108388, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38047072

RESUMO

Investigating the rheology of 2D materials such as clays is of growing interest in various applications as it dictates their flowability and structural stability. Clay minerals present unique rheological properties, especially when in suspension. This study explores the effect of functionalizing bentonite clay with betaines of variable carbon chain lengths on the rheological properties of clay slurries to analyze their interactions in suspension. The results show that these zwitterion-functionalized clays exhibit higher viscosity, storage moduli, and flow stresses due to the formation of three-dimensional networks and increased aggregation caused by intercalation. The structural properties of the clay slurries are also found to be pH-sensitive. Additionally, XRD and SEM analyses support the proposed intercalation of the clays. The findings suggest the potential application of small-chain betaine functionalized clays in engineering and energy applications. Overall, this study provides insight into predicting the stability and strength of functionalized clay suspensions.

2.
Catal Sci Technol ; 12: 3804-3816, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35965882

RESUMO

Contiguous metal foams offer a multitude of advantages over conventional powders as supports for nanostructured heterogeneous catalysts; most critically a preformed 3-D porous framework ensuring full directional coverage of supported catalyst, and intrinsic ease of handling and recyclability. Nonetheless, metal foams remain comparatively underused in thermal catalysis compared to more conventional supports such as amorphous carbon, metal oxides, zeolites and more recently MOFs. Herein, we demonstrate a facile preparation of highly-reactive, robust, and easy to handle Ni foam-supported Cu-based metal catalysts. The highly sustainable synthesis requires no specialized equipment, no surfactants or additive redox reagents, uses water as solvent, and CuCl2(H2O)2 as precursor. The resulting material seeds as well-separated micro-crystalline Cu2(OH)3Cl evenly covering the Ni foam. Calcination above 400 °C transforms the Cu2(OH)3Cl to highly porous CuO. All materials display promising activity towards the reduction of 4-nitrophenol and methyl orange. Notably, our leading CuO-based material displays 4-nitrophenol reduction activity comparable with very reactive precious-metal based systems. Recyclability studies highlight the intrinsic ease of handling for the Ni foam support, and our results point to a very robust, highly recyclable catalyst system.

3.
Pharmaceutics ; 13(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34959408

RESUMO

Hemorrhage is one of the greatest threats to life on the battlefield, accounting for 50% of total deaths. Nearly 86% of combat deaths occur within the first 30 min after wounding. While external wound injuries can be treated mostly using visual inspection, abdominal or internal hemorrhages are more challenging to treat with regular hemostatic dressings because of deep wounds and points of injury that cannot be located properly. The need to treat trauma wounds from limbs, abdomen, liver, stomach, colon, spleen, arterial, venous, and/or parenchymal hemorrhage accompanied by severe bleeding requires an immediate solution that the first responders can apply to reduce rapid exsanguinations from external wounds, including in military operations. This necessitates the development of a unique, easy-to-use, FDA-approved hemostatic treatment that can deliver the agent in less than 30 s and stop bleeding within the first 1 to 2 min at the point of injury without application of manual pressure on the wounded area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...