Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38206467

RESUMO

In this study, sugarcane bagasse ash (SCBA), obtained as residue from the sugar mill, was used as an adsorbent for Acid Red 27 (AR27) removal from aqueous solutions. The ash characterization data showed 23.63% of organic compounds and silica (α-SiO2) as the most expressive inorganic compound (confirmed by X-ray diffractogram), the BET surface area had a value of 62.79 m2.g-1 and the pHpzc was 8.45. Regarding the adsorptive tests, the optimal initial pH to the dye removal was 2.0. The adsorption equilibrium reached in about 4 h contact time and optimum SCBA dosage was found to be 4 g.L-1. The pseudo-second order model best represented the adsorption kinetics. The Freundlich equation presented the best fit to the equilibrium data for the removal of AR27 by ash, with maximum adsorption capacity of 15 mg.g-1 at pH 2.0. Thermodynamic study indicate that AR27 adsorption on SCBA occurs through a physisorption mechanism, with ΔHºads < 15 kJ.mol-1. The ΔHºads evaluated by Vant' Hoff equation was explained as a combination of water desorption enthalpy, ΔHºW and isosteric like enthalpy, ΔHºD for the dye adsorption in liquid environment. The ΔHºD = 9.2 kJ.mol-1 was calculated from Clausius-Clapeyron approach. The effects of coexisting anions on the adsorption and regeneration and reuse of the adsorbent were also investigated. This study suggests that SCBA, which was used without any pretreatment, has the potential to be applied as a low-cost adsorbent to mitigate effluents contamination with AR27 dye at low concentrations.

2.
Soft Matter ; 20(7): 1475-1485, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38263875

RESUMO

Proteins are of great importance for medicine and the pharmaceutical and food industries. However, proteins need to be purified prior to their application. This work investigated the application of a hydrogel bionanocomposite based on agar and graphene oxide (GO) for capturing cytochrome C (Cyto C) heme protein by adsorption from aqueous solutions with other proteins. Although applications of GO-based materials in adsorption are widely studied, the focus on semi-continuous processes remains limited. Adsorption experiments were carried out in batch and fixed bed columns. The effect of pH and ionic strength on adsorption was investigated, and there is evidence that electrostatic interactions between Cyto C and the nanocomposite were favoured at pH = 7; the adsorption capacity decreased as NaCl and KCl concentrations increased, ascribed to the weak electrostatic interaction between the protein and GO active sites in the bionanocomposite. All adsorption isotherm models (Langmuir, Freundlich, Sips) used gave suitable adjustments to the equilibrium experimental data and the kinetic models applied. The maximum adsorption capacity predicted by the Langmuir isotherm was ∼400 mgCytoC gadsorbent,dry-1, and the adsorption thermodynamics indicated a physisorption process. Tests were performed to evaluate the co-adsorption in batch, and the composite was effective in adsorbing Cyto C in solution with bovine serum albumin (BSA) and L-phenylalanine. Fixed bed tests were performed, and although protein adsorption onto nanoparticles can be challenging, the Cyto C adsorbed could be successfully recovered after desorption. Overall, the GO-based hydrogel was an effective method for cytochrome C adsorption, exhibiting a notorious potential for applications in protein separation processes.


Assuntos
Grafite , Hemeproteínas , Citocromos c , Água , Grafite/química , Hidrogéis , Adsorção , Concentração de Íons de Hidrogênio , Cinética
3.
Artigo em Inglês | MEDLINE | ID: mdl-38055167

RESUMO

Nano-biocomposite hydrogel samples were produced using graphene oxide (GO) and agar and applied as adsorbents of organic components in water. The hydrogels were prepared by varying the wt% of Agar and GO. The samples were characterized, and batch adsorption experiments evaluated the effect of initial pH, equilibrium isotherms, and kinetics for the adsorption of the anionic dye Acid Orange 7 (AO) and the cationic dyes Nile Blue A (NB) and methylene blue (MB) in an aqueous medium. Overall, both hydrogel samples exhibited satisfactory results for removing NB and MB; however, there was no effective removal for the anionic dye AO. Adsorption equilibrium isotherms were obtained, and Freundlich, Langmuir, and Sips models were fitted to the experimental equilibrium data; moreover, kinetic data were adjusted to driving force models and particle mass balance. The maximum experimental adsorption capacities, 141.48 mg·g-1 (MB) and 284.69 mg·g-1 (NB), were obtained, on a dry basis, for the sample produced with 70 wt% of agar and 30 wt% of GO. Both hydrogels exhibited remarkable regenerative potential for NB and MB, with the adsorption capacity remaining constant, even after five adsorption/desorption cycles.

4.
Environ Res ; 216(Pt 1): 114425, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181896

RESUMO

In this work, Chloroquine diphosphate, and the cationic dye Safranin-O were selectively removed from water using the agar-graphene oxide (A-GO) hydrogel, produced via simple one-step jellification process. The morphology of the A-GO biocomposite was characterized and batch experiments were performed, with adsorption isotherms satisfactorily fitting (R2 > 0.98) Sips (Safranin-O) and Freundlich (Chloroquine) isotherms. Driving force models and Fick's diffusion equation were applied to the modeling of kinetic data, and a satisfactory fit was obtained. Selective adsorption carried out in batch indicated that competitive adsorption occurs when both components are mixed in water solution - the adsorptive capacities dropped ∼10 mg g-1 for each component, remaining 41 mg g-1 for safranin-O and 31 mg g-1 for chloroquine. Fixed-bed breakthrough curves obtained in an adsorption column showed adsorption capacities over 63 mg g-1 and 100 mg g-1 for chloroquine and safranin-O, respectively, also exhibiting outstanding regenerative potentials. Overall, the biocomposite produced using graphene oxide proved to be a viable and eco-friendly alternative to continuously remove both contaminants from water.


Assuntos
Poluentes Químicos da Água , Água , Adsorção , Ágar , Hidrogéis , Poluentes Químicos da Água/análise , Cinética , Cloroquina
5.
Environ Sci Pollut Res Int ; 28(19): 23684-23698, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32996089

RESUMO

Multilayer graphene oxide (mGO) was synthesized and functionalized via co-precipitation method to produce magnetic Fe3O4-functionalized multilayer graphene oxide nanocomposite (MmGO). Photocatalytic properties of MmGO were investigated in the photodegradation of raw textile wastewater samples. Fourier-transformed infrared spectroscopy revealed Fe-O vibrations, characterized by the band shift from 636.27 to 587.25 cm-1 on MmGO. X-ray diffraction confirmed the successful oxidation of graphite by the (002) peak at 10° and indicated the presence of Fe3O4 on MmGO surface by the peaks at 2θ 35.8° (311), 42.71° (400), 54.09° (511), and 62.8° (440). There was no detection of coercivity field and remnant magnetization, evidencing a material with superparamagnetic properties. Then, the textile effluent was treated by heterogeneous photo-Fenton (HPF) reaction. A 22 factorial design was conducted to evaluate the effects of MmGO dosage and H2O2 concentration on HPF, with color and turbidity removal as response variables. The kinetic behavior of the adsorption and HPF processes was investigated separately, in which, the equilibrium was reached within 60 and 120 min, for adsorption and HPF, respectively. Pseudo-second-order model exhibited the best fit, with COD uptake capacity at equilibrium of 4094.94 mg g-1, for chemical oxygen demand. The modeling of kinetics data showed that the Chan and Chu model was the most representative for HPF, with initial removal rate of 95.52 min-1. The removal of organic matter was 76.36% greater than that reached by conventional treatment at textile mills. The presence of Fe3O4 nanoparticles attached to MmGO surface was responsible for the increase of electron mobility and the enhancement of its photocatalytic properties. Finally, MmGO presented low phytotoxic to Cucumis sativus L. with a RGI of 0.53. These results bring satisfactory perspectives regarding further employment, on large scale, of MmGO as nanocatalyst of textile pollutants.


Assuntos
Grafite , Poluentes Químicos da Água , Adsorção , Peróxido de Hidrogênio , Cinética , Têxteis , Águas Residuárias
6.
Environ Res ; 184: 109362, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32199322

RESUMO

Functionalized graphene and its derivatives have been subject of many recent studies investigating their use as scavenger of various industrial pollutants. Adsorption is a feasible treatment, which can employ a wide variety of materials as adsorbents. Additionally, graphene has been distinguished for its remarkable properties, such as mechanical resistance, flexibility and electric conductivity. A relevant aspect of functionalized graphene is related to its selectivity, resulting in increased removal rates of specific pollutants. Hence, the functionalization process of graphene nanosheets is the cutting edge of the materials and environmental sciences, promoting the development of innovative and highly capable sorbents. The purpose of this review is to assemble the available information about functionalized graphene nanomaterials used for the removal of water pollutants and to explore its wide potential. In addition, various optimal experimental conditions (solution pH, equilibrium time, adsorbent dosage) are discussed. In each topic, aspects of environmental protection of adsorption process were evaluated, as well as the most recent works, available from high impact journals in the field, have been explored. Additionally, the employment of natural compounds to functionalize, reduce and support graphene, was evaluated as green alternatives to chemicals.


Assuntos
Grafite , Poluentes Químicos da Água , Adsorção , Corantes , Íons , Cinética
7.
Environ Sci Pollut Res Int ; 27(9): 9718-9732, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31925689

RESUMO

Amino-functionalized multilayer graphene oxide (Am-nGO) has been synthesized and applied to remove the reactive drimaren red (DR) from aqueous solutions. Infrared spectroscopy evidenced amine and amide presence by peaks at 1579 cm-1 and a band between 3300 and 3500 cm-1. Raman spectroscopy showed an increment in ID/IG ratio after amino-Fe3O4-functionalization of nGO from 1.05 to 1.20, referent to an increase in sp3 domain disorder. The isoelectric point of Am-nGO was pH 8.1. From kinetic study, the equilibrium was achieved within 90 min; moreover, pseudo-n-order model satisfactorily fitted to the experimental data. Kinetic constant (kn) was 0.71 mg1-n g1-n min-1 and modeled equilibrium sorption capacity (qe) 219.17 mg g-1. Equilibrium experiments showed monolayer adsorption capacity (qm) of 219.75 mg g-1, and BET model best fitted to the equilibrium data, indicating that the adsorption process happened with multiple layers formation. From sorption thermodynamics, the standard free energy of Gibbs and enthalpy were respectively - 31.91 kJ mol-1 (at 298 K) and 66.43 kJ mol-1. Such data evidence the spontaneous and chemical behavior of DR adsorption as a consequence of strong electron donor-receptor interactions between the dye and the nanosorbent. By phytotoxicity assessment, Am-nGO showed inexpressive inhibitory potential to American lettuce seeds in comparison with its precursor nGO and graphite nanoplatelets.


Assuntos
Grafite , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica
8.
Artigo em Inglês | MEDLINE | ID: mdl-31533527

RESUMO

The dyes used in textile industries are usually difficult to degrade in aquatic environments, being highly toxic to micro fauna and flora. Thus, textile wastewater treatments have been developed, among them, one that stands out is adsorption process. With the rise of nanomaterials applied to adsorption, graphene oxide (GO) shows promise in the removal of dyes. This work aimed to produce a more economical and environmentally friendly GO by reducing H2SO4 concentration during the synthesis. Adsorption tests were performed with methylene blue (MB) and brilliant blue (BB), adsorbent regeneration tests, as well as a kinetic study using real wastewater, and toxicological assays with lettuce seeds. Results showed that the sample produced with less H2SO4 (GO-21) performed better for MB (99% removal) and BB (29% removal); and recycling test showed that despite the decrease in removal efficiency, it remained high in the first cycles. Kinetics showed that equilibrium was reached in 30 min, removing 67.43% of color and 90.23% of the effluent's turbidity. Phytotoxicity assays indicated that the wastewater treated with GO-21 was the least toxic, compared to other wastewater samples analyzed. Therefore, GO has demonstrated its potential to be an effective and less toxic option to treat textile effluents.[Formula: see text].


Assuntos
Corantes/isolamento & purificação , Grafite/síntese química , Lactuca/efeitos dos fármacos , Águas Residuárias/toxicidade , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Cor , Corantes/química , Biomarcadores Ambientais/efeitos dos fármacos , Grafite/química , Cinética , Indústria Têxtil , Águas Residuárias/química , Poluentes Químicos da Água/química
9.
Environ Technol ; 41(21): 2771-2782, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30741128

RESUMO

This work shows a promising, environmentally friendly and greener alternative for the production and application of electrochemically produced Graphene Oxide (GO) for the adsorptive removal of Methylene Blue (MB) dye in an aqueous medium. During the adsorption tests, GO produced via electrochemical route reached the equilibrium in only 10 min of contact, exhibiting a percentage removal of MB over 97%. It could also be observed that the experimental data better fitted to the pseudo-second order kinetic model. By analysing the isotherms, it was verified the maximum adsorptive capacity was 500 mg g-1 (303.15 K) and that in overall, adsorptive capacity decreases with the increase in temperature. Experimental equilibrium data were better fitted to the Freundlich isotherms in all temperatures studied (303.15, 318.15 and 333.15 K). The thermodynamic analysis confirmed the exothermic nature of the process, and that MB adsorption onto GO occurs spontaneously. ΔH◦ and ΔG◦ values suggested that physisorption occurred, which is mainly due to π-π interactions and electrostatic interactions between MB and oxygen functional groups on the GO surface. Cost-effectiveness analysis showed there is a lower cost involved in the production of electrochemical GO, as compared to the Hummers method; and in the reusability study, even after 5 cycles GO removed ≥ 90% MB. Thus, the electrochemically produced GO seems to be an efficient, cost-effective and environmentally friendly alternative for colour removal from water, as it uses less hazardous and expensive reagents when compared to those applied in the traditional GO synthesis, without losing, however, the efficiency in colour removal from water.


Assuntos
Corantes , Poluentes Químicos da Água , Adsorção , Grafite , Água
10.
Environ Sci Pollut Res Int ; 26(28): 28593-28602, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30203343

RESUMO

Graphene oxide (GO) was synthetized from graphite oxidation via the modified Hummers method. Afterwards, the GO was functionalized with diethylenetriamine (DETA) and FeCl3 to obtain the novel amino-iron oxide functionalized graphene (GO-NH2-Fe3O4). FTIR, XRD, SEM with EDX, and Raman spectroscopy were performed to characterize both GO and GO-NH2-Fe3O4. The GO-NH2-Fe3O4 was then evaluated as adsorbent of the cationic dye Methylene Blue (MB); analysis of the point of zero net charge (pHPZC) and pH effect showed that the GO-NH2-Fe3O4 pHPZC was 8.2; hence, the MB adsorption was higher at pH 12.0. Adsorption kinetics studies indicated that the system reached the equilibrium state after 5 min, with adsorption capacity at equilibrium (qe) and kinetic constant (kS) of 966.39 mg g-1 and 3.17∙10-2 g mg-1 min-1, respectively; moreover, the pseudo-second-order model was better fitted to the experimental data. Equilibrium studies showed maximum adsorption capacity of 1047.81 mg g-1; furthermore, Langmuir isotherm better fitted the adsorption. Recycling experiments showed that the GO-NH2-Fe3O4 maintained the MB removal rate above 95% after 10 cycles. All the results showed sorbent high adsorption capacity and outstanding regeneration capability and evidenced the employment of novel GO-NH2-Fe3O4 as a profitable adsorbent of textile dyes.


Assuntos
Aminas/química , Compostos Férricos/química , Grafite/química , Azul de Metileno/química , Adsorção , Cinética , Análise Espectral Raman
11.
Int J Biol Macromol ; 99: 121-127, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28237573

RESUMO

Laccase enzymes of Aspergillus oryzae were immobilized on graphene nanosheets by physical adsorption and covalent bonding. Morphological features of the graphene sheets were characterized via microscopy techniques. The immobilization by adsorption was carried out through contact between graphene and solution of laccase enzyme dissolved in deionized water. The adsorption process followed a Freundlich model, showing no tendency to saturation within the range of values used. The process of immobilization by covalent bonding was carried out by nitration of graphene, followed by reduction of sodium borohydride and crosslinking with glutaraldehyde. The process of immobilization by both techniques increased the pH range of activity of the laccase enzyme compared to the free enzyme and increased its operating temperature. On operational stability, the enzyme quickly loses its activity after the second reaction cycle when immobilized via physical adsorption, while the technique by covalent bonding retained around 80% activity after six cycles.


Assuntos
Aspergillus oryzae/enzimologia , Enzimas Imobilizadas/química , Grafite/química , Lacase/química , Nanoestruturas/química , Adsorção , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Lacase/metabolismo , Modelos Moleculares , Conformação Molecular , Fenol/química , Fenol/isolamento & purificação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...