Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Solid Earth ; 126(12): e2021JB022797, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35846502

RESUMO

We investigate the origin of a long-lived earthquake cluster in the Fars arc of the Zagros Simply Folded Belt that is colocated with the major Shanul natural gas field. The cluster emerged in January 2019 and initially comprised small events of M n ∼ 3-4. It culminated on 9 June 2020 with a pair of M w 5.4 and 5.7 earthquakes, which was followed by >100 aftershocks. We assess the spatiotemporal evolution of the earthquake sequence using multiple event hypocenter relocations, waveform inversions, and Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) measurements and models. We find that the early part of the sequence is spatially distinct from the 9 June 2020 earthquakes and their aftershocks. Moment tensors, centroid depths, and source parameter uncertainties of 15 of the largest (M n ≥ 4.0) events show that the sequence is dominated by reverse faulting at shallow depths (mostly ≤4 km) within the sedimentary cover. InSAR modeling shows that the M w 5.7 mainshock occurred at depths of 2-8 km with a rupture length and maximum slip of ∼20 km and ∼0.5 m, respectively. Our results suggest that the 2019-2020 Khalili earthquake sequence was likely influenced by operation of the Shanul field, though elevated natural seismicity in the Zagros makes the association difficult to prove. Understanding how to distinguish man-made from natural seismicity is helpful for hazard and risk assessment, notably in the Zagros, which is both seismically active and rich in oil and gas reserves.

2.
Environ Monit Assess ; 190(3): 144, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29453617

RESUMO

Because of the outdated methods of common landfill selection, it is imperative to reevaluate the usage suitability. To assess the suitability of the existing waste landfill in Zanjan, Iran, we have used a combination of the analytical hierarchy process (AHP) and GIS techniques, along with fieldwork surveys. Four major criteria and 12 subcriteria were considered, and the AHP was applied to assign the relative importance weights of criteria and subcriteria to each other. Finally, a landfill suitability map was generated and ranked based on the final suitability scores. The results show that the unsuitable areas are around Zanjan, in the middle parts of the plain. By contrast, the most suitable areas are uncultivated areas, located mostly in the west, north, and south. The results also indicate that the present landfill is a highly suitable site. After desk studies, geoelectrical surveys and infiltration measurements were conducted to make the final decision. Double-ring permeability tests confirm the landfill is an acceptable site. The electrical sounding shows that the leachate plume has a width of about ~ 450 m, spreads to a depth of about ~ 55 m, and migrates towards the northeast. Considering the groundwater depth, dry climate, and a low infiltration rate of the landfill soils, it can be concluded that leachate plumes will not contaminate groundwater within this decade. The proposed method can be implemented to reevaluate the suitability of any old operating reservoir such as oil reservoirs, petrol filling stations, heavy industrial tanks, and landfills, containing liquid hazardous materials.


Assuntos
Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos , Técnicas de Apoio para a Decisão , Irã (Geográfico) , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...