Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Biochem ; 45(11): e13949, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34558084

RESUMO

To prevent enzymatic browning, applying a polyphenol oxidase (PPO) inhibitor is more desirable, especially when the freshness of the product matters. Most of the inhibition studies were done on mushroom tyrosinase (MT) while the literature indicates that MT and PPO of Solanum tuberosum (PPOsol ) respond differently to the same modulator despite their similar active sites. This research was conducted to deepen our knowledge about PPOsol and introduce a more specific inhibitor for this enzyme to be used in controlling the enzymatic browning of potatoes. A modified procedure was developed for PPOsol purification. The enzyme was subjected to some essential physicochemical and kinetics studies. In parallel to the comparable physicochemical properties, homology modeling revealed high structural similarity between Solanum lycopersicum PPO (PPOsly ) and PPOsol except for their active site pockets. Accordingly, PPOsol showed 5.1- and 34-fold higher affinity toward chlorogenic acid compared with two PPOsly isozymes. Alike PPOsly , PPOsol showed monophenolase activity but it was inactive toward L-tyrosine and p-coumaric acid. Based on structural criteria, phthalic acid, cinnamic acid, ferulic acid, and vanillin were selected and thoroughly examined for inhibition of the catecholase activity of PPOsol . Although all these substances inhibited PPOsol in mixed-inhibition mode, the results were strongly in favor of vanillin with IC50 < 1.37 mM and Ki < 1.2 mM. PRACTICAL APPLICATIONS: There are subtle structural differences in the active site pockets of polyphenol oxidase (PPOs) of various fruits, vegetables, and crops. Consequently, to introduce an efficient inhibitor for hindering enzymatic browning of crop products, it is essential to have detailed knowledge about the structure and activity of its PPO as the main player of this undesirable phenomenon. Results of this study not only shed light on the physicochemical properties of PPOsol but can also be used in making various formulations for safe controlling enzymatic browning of potatoes, especially fresh-cut and minimally processed products, and similar crops products during postharvest and the processes of products preparations.


Assuntos
Solanum lycopersicum , Solanum tuberosum , Catecol Oxidase
2.
Protein J ; 40(5): 689-698, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34047882

RESUMO

As a safe substitute for hydroquinone, ß-arbutin, a natural plant substance, and its synthetic counterpart, α-arbutin, are used in depigmentation formulations. However, there are debatable points regarding the impact of arbutin on tyrosinase and the pigmentation process. To shed light on this issue, the effects of Pyrus biossieriana leaves extract (PbLE) and ß-arbutin, extracted from PbLE, on mushroom tyrosinase (MT) were comprehensively examined. The study was focused on cresolase activity as the characteristic reaction of a tyrosinase. Kinetics studies disclosed that ß-arbutin can modulate MT monophenolase activity from inhibition to activation or vice versa. ß-Arbutin inhibited L-tyrosine (LTy) oxidation at concentrations < 0.3 mM but it increased (more than 400%) the enzymatic oxidation of L-tyrosine at the concentrations > 0.3 mM. An opposite pattern (activation then inhibition) was observed when a synthetic substrate was used instead of LTy. Computational studies, focused on the heavy chain of MT, indicated that ß-arbutin effect could be overruled by the enzyme's ability to provide the ligand with a non-specific binding site (MTPc). A plausible mechanism was presented to show the influence of MTPc on the substrate pose in the active site. The possible determinant correlation between the findings of this research and the current studies on human tyrosinase role in the pigmentation process has been presented.


Assuntos
Agaricales/enzimologia , Arbutina/química , Proteínas Fúngicas/química , Monofenol Mono-Oxigenase/química , Folhas de Planta/química , Pyrus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...