Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 659: 124211, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38750981

RESUMO

Antibody-drug conjugates (ADCs) provide effective cancer treatment through the selective delivery of cytotoxic payloads to the cancer cells. They offer unparalleled precision and specificity in directing drugs to cancer cells while minimizing off-target effects. Despite several advantages, there is a requirement for innovations in the molecular design of ADC owing to drug resistance, cancer heterogeneity along the adverse effects of treatment. The review critically analyses ADC function mechanisms, unraveling the intricate interplay between antibodies, linkers, and payloads in facilitating targeted drug delivery to cancer cells. The article also highlights notable advancements in antibody engineering, which aid in creating highly selective and potent ADCs. Additionally, the review details significant progress in clinical ADC development with an in-depth examination of pivotal trials and approved formulations. Antibody Drug Conjugates (ADCs) are a ground-breaking approach to targeted drug delivery, especially in cancer treatment. They offer unparalleled precision and specificity in directing drugs to cancer cells while minimizing off-target effects. This review provides a comprehensive examination of the current state of ADC development, covering their design, mechanisms of action, and clinical applications. The article emphasizes the need for greater precision in drug delivery and explains why ADCs are necessary.

2.
Chemosphere ; 358: 142235, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705416

RESUMO

Ultraviolet (UV) radiation is a major contributor to skin aging, cancer, and other detrimental health effects. Sunscreens containing FDA-approved UV filters, like avobenzone, offer protection but suffer from photodegradation and potential phototoxicity. Encapsulation, antioxidants, and photostabilizers are strategies employed to combat these drawbacks. Octocrylene, an organic UV filter, utilizes nanotechnology to enhance sun protection factor (SPF). This review examines recent literature on octocrylene-enriched sunscreens, exploring the interplay between environmental impact, nanotechnological advancements, and clinical trial insights. A critical focus is placed on the environmental consequences of sunscreen use, particularly the potential hazards UV filters pose to marine ecosystems. Research in the Mediterranean Sea suggests bacterial sensitivity to these filters, raising concerns about their integration into the food chain. This review aims to guide researchers in developing effective strategies for photostabilization of UV filters. By combining encapsulation, photostabilizers, and antioxidants, researchers can potentially reduce phototoxic effects and contribute to developing more environmentally friendly sunscreens.


Assuntos
Protetores Solares , Raios Ultravioleta , Protetores Solares/química , Protetores Solares/toxicidade , Humanos , Acrilatos/química , Nanotecnologia , Antioxidantes/química , Fator de Proteção Solar
3.
J Ethnopharmacol ; 330: 118180, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614262

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aromatherapy, a holistic healing practice utilizing the aromatic essences of plant-derived essential oils, has gained significant attention for its therapeutic potential in promoting overall well-being. Use of phytoconstituent based essential oil has played a significant role in the evolving therapeutic avenue of aromatherapy as a complementary system of medicine. AIM OF THE STUDY: This comprehensive review article aims to explore the usage of essential oils for aromatherapy, shedding light on their diverse applications, scientific evidence, and safety considerations. Furthermore, the growing interest in using essential oils as complementary therapies in conjunction with conventional medicine is explored, underscoring the significance of collaborative healthcare approaches. MATERIALS AND METHODS: Literature search was performed from databases like PubMed, ScienceDirect, Scopus, and Bentham using keywords like Aromatherapy, Aromatic Plants, Essential oils, Phytotherapy, and complementary medicine. The keywords were used to identify literature with therapeutic and mechanistic details of herbal agents with desired action. RESULTS: The integration of traditional knowledge with modern scientific research has led to a renewed interest in essential oils as valuable tools in contemporary healthcare. Various extraction methods used to obtain essential oils are presented, emphasizing their impact on the oil's chemical composition and therapeutic properties. Additionally, the article scrutinizes the factors influencing the quality and purity of essential oils, elucidating the significance of standardization and certification for safe usage. A comprehensive assessment of the therapeutic effects of essential oils is provided, encompassing their potential as antimicrobial, analgesic, anxiolytic, and anti-inflammatory agents, among others. Clinical trials and preclinical studies are discussed to consolidate the existing evidence on their efficacy in treating diverse health conditions, both physical and psychological. Safety considerations are of paramount importance when employing essential oils, and this review addresses potential adverse effects, contraindications, and best practices to ensure responsible usage. CONCLUSIONS: This comprehensive review provides valuable insights into the exploration of essential oils for aromatherapy, emphasizing their potential as natural and potent remedies for a wide range of ailments. By amalgamating traditional wisdom and modern research, this article aims to encourage further investigation into the therapeutic benefits of essential oils while advocating for their responsible and evidence-based incorporation into healthcare practices.


Assuntos
Aromaterapia , Óleos Voláteis , Óleos Voláteis/uso terapêutico , Aromaterapia/métodos , Humanos , Animais
4.
Sci Rep ; 14(1): 3705, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355697

RESUMO

Nanoengineered chitosan functionalized titanium dioxide biohybrids (CTiO2@NPs) were prepared with Amomum subulatum Roxb extract via one-pot green method and assessed by UV-Vis spectroscopy, XRD, SEM and EDAX analyses. As revealed by XRD pattern, the nanohybrids exhibits a rutile TiO2 crystallites around 45 nm in size. The emergence of the Ti-O-Ti bond is identified by observing a peak between 400 and 800 cm-1. A wide bandgap (4.8 eV) has been observed in CTiO2@NPs, due to the quantum confinement effects and the oxygen vacancies reveal the intriguing potential of developed nanohybrids for various applications. Surface flaws were identified by observing an emission band at 382, 437, 482, 517, and 556 nm. They also exhibit better antibacterial performances using well diffusion method against Staphylococcus aureus, Bacillus substilis, Klebsiella pneumonia, and Escherichia coli. CTiO2@NPs were discovered to have free radical scavenging activity on DPPH analysis and exhibit IC50 value as 95.80 µg/mL and standard (Vitamin C) IC50 is 87.62 µg/mL. CTiO2@NPs exhibited better anticancer properties against the osteosarcoma (MG-63) cell line. All these findings suggest that there is a forum for further useful therapeutic applications. Therefore, we claim that nano-engineered carbohydrated TiO2 phytohybrid is a promising solution for bacterial infections and bone cancer.


Assuntos
Infecções Bacterianas , Quitosana , Nanopartículas Metálicas , Neoplasias , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Titânio/farmacologia , Titânio/química , Infecções Bacterianas/tratamento farmacológico , Nanopartículas Metálicas/química
5.
Int J Biol Macromol ; 260(Pt 2): 129581, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266848

RESUMO

One of the critical steps in gene therapy is the successful delivery of the genes. Immunogenicity and toxicity are major issues for viral gene delivery systems. Thus, non-viral vectors are explored. A cationic polysaccharide like chitosan could be used as a nonviral gene delivery vector owing to its significant interaction with negatively charged nucleic acid and biomembrane, providing effective cellular uptake. However, the native chitosan has issues of targetability, unpacking ability, and solubility along with poor buffer capability, hence requiring modifications for effective use in gene delivery. Modified chitosan has shown that the "proton sponge effect" involved in buffering the endosomal pH results in osmotic swelling owing to the accumulation of a greater amount of proton and chloride along with water. The major challenges include limited exploration of chitosan as a gene carrier, the availability of high-purity chitosan for toxicity reduction, and its immunogenicity. The genetic drugs are in their infancy phase and require further exploration for effective delivery of nucleic acid molecules as FDA-approved marketed formulations soon.


Assuntos
Quitosana , Ácidos Nucleicos , Quitosana/química , Prótons , Técnicas de Transferência de Genes , Terapia Genética/métodos
6.
ACS Biomater Sci Eng ; 10(1): 271-297, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38096426

RESUMO

Nanotechnology has emerged as a transformative pathway in vaccine research and delivery. Nanovaccines, encompassing lipid and nonlipid formulations, exhibit considerable advantages over traditional vaccine techniques, including enhanced antigen stability, heightened immunogenicity, targeted distribution, and the potential for codelivery with adjuvants or immune modulators. This review provides a comprehensive overview of the latest advancements and applications of lipid and non-lipid-based nanovaccines in current vaccination strategies for immunization. The review commences by outlining the fundamental concepts underlying lipid and nonlipid nanovaccine design before delving into the diverse components and production processes employed in their development. Subsequently, a comparative analysis of various nanocarriers is presented, elucidating their distinct physicochemical characteristics and impact on the immune response, along with preclinical and clinical studies. The discussion also highlights how nanotechnology enables the possibility of personalized and combined vaccination techniques, facilitating the creation of tailored nanovaccines to meet the individual patient needs. The ethical aspects concerning the use of nanovaccines, as well as potential safety concerns and public perception, are also addressed. The study underscores the gaps and challenges that must be overcome before adopting nanovaccines in clinical practice. This comprehensive analysis offers vital new insights into lipid and nonlipid nanovaccine status. It emphasizes the significance of continuous research, collaboration among interdisciplinary experts, and regulatory measures to fully unlock the potential of nanotechnology in enhancing immunization and ensuring a healthier, more resilient society.


Assuntos
COVID-19 , Nanopartículas , Vacinas , Humanos , Nanovacinas , Nanopartículas/uso terapêutico , COVID-19/prevenção & controle , Vacinas/uso terapêutico , Lipídeos
7.
Front Immunol ; 14: 1264502, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818370

RESUMO

The outbreak of a fatal black fungus infection after the resurgence of the cadaverous COVID-19 has exhorted scientists worldwide to develop a nutshell by repurposing or designing new formulations to address the crisis. Patients expressing COVID-19 are more susceptible to Mucormycosis (MCR) and thus fall easy prey to decease accounting for this global threat. Their mortality rates range around 32-70% depending on the organs affected and grow even higher despite the treatment. The many contemporary recommendations strongly advise using liposomal amphotericin B and surgery as first-line therapy whenever practicable. MCR is a dangerous infection that requires an antifungal drug administration on appropriate prescription, typically one of the following: Amphotericin B, Posaconazole, or Isavuconazole since the fungi that cause MCR are resistant to other medications like fluconazole, voriconazole, and echinocandins. Amphotericin B and Posaconazole are administered through veins (intravenously), and isavuconazole by mouth (orally). From last several years so many compounds are developed against invasive fungal disease but only few of them are able to induce effective treatment against the micorals. Adjuvant medicines, more particularly, are difficult to assess without prospective randomized controlled investigations, which are challenging to conduct given the lower incidence and higher mortality from Mucormycosis. The present analysis provides insight into pathogenesis, epidemiology, clinical manifestations, underlying fungal virulence, and growth mechanisms. In addition, current therapy for MCR in Post Covid-19 individuals includes conventional and novel nano-based advanced management systems for procuring against deadly fungal infection. The study urges involving nanomedicine to prevent fungal growth at the commencement of infection, delay the progression, and mitigate fatality risk.


Assuntos
COVID-19 , Mucormicose , Micoses , Humanos , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Mucormicose/tratamento farmacológico , Virulência , Micoses/tratamento farmacológico
8.
Pharmaceutics ; 15(7)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37514102

RESUMO

Artificial intelligence (AI) has emerged as a powerful tool that harnesses anthropomorphic knowledge and provides expedited solutions to complex challenges. Remarkable advancements in AI technology and machine learning present a transformative opportunity in the drug discovery, formulation, and testing of pharmaceutical dosage forms. By utilizing AI algorithms that analyze extensive biological data, including genomics and proteomics, researchers can identify disease-associated targets and predict their interactions with potential drug candidates. This enables a more efficient and targeted approach to drug discovery, thereby increasing the likelihood of successful drug approvals. Furthermore, AI can contribute to reducing development costs by optimizing research and development processes. Machine learning algorithms assist in experimental design and can predict the pharmacokinetics and toxicity of drug candidates. This capability enables the prioritization and optimization of lead compounds, reducing the need for extensive and costly animal testing. Personalized medicine approaches can be facilitated through AI algorithms that analyze real-world patient data, leading to more effective treatment outcomes and improved patient adherence. This comprehensive review explores the wide-ranging applications of AI in drug discovery, drug delivery dosage form designs, process optimization, testing, and pharmacokinetics/pharmacodynamics (PK/PD) studies. This review provides an overview of various AI-based approaches utilized in pharmaceutical technology, highlighting their benefits and drawbacks. Nevertheless, the continued investment in and exploration of AI in the pharmaceutical industry offer exciting prospects for enhancing drug development processes and patient care.

9.
Pharmaceutics ; 15(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36986867

RESUMO

Several developments and research methods are ongoing in drug technology and chemistry research to elicit effectiveness regarding the therapeutic activity of drugs along with photoprotection for their molecular integrity. The detrimental effect of UV light induces damaged cells and DNA, which leads to skin cancer and other phototoxic effects. The application of sunscreen shields to the skin is important, along with recommended UV filters. Avobenzone is widely used as a UVA filter for skin photoprotection in sunscreen formulations. However, keto-enol tautomerism propagates photodegradation into it, which further channelizes the phototoxic and photoirradiation effects, further limiting its use. Several approaches have been used to counter these issues, including encapsulation, antioxidants, photostabilizers, and quenchers. To seek the gold standard approach for photoprotection in photosensitive drugs, combinations of strategies have been implemented to identify effective and safe sunscreen agents. The stringent regulatory guidelines for sunscreen formulations, along with the availability of limited FDA-approved UV filters, have led many researchers to develop perfect photostabilization strategies for available photostable UV filters, such as avobenzone. From this perspective, the objective of the current review is to summarize the recent literature on drug delivery strategies implemented for the photostabilization of avobenzone that could be useful to frame industrially oriented potential strategies on a large scale to circumvent all possible photounstable issues of avobenzone.

10.
Ther Deliv ; 5(7): 781-94, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25287385

RESUMO

BACKGROUND: The aim of the study was to investigate ethyl cellulose microsponges as topical carriers for the controlled release and cutaneous drug deposition of eberconazole nitrate (EB). MATERIALS & METHOD: EB microsponges were prepared using the quasiemulsion solvent diffusion method. The effect of formulation variables (drug:polymer ratio, internal phase volume and amount of emulsifier) and process variables (stirring time and stirring speed) on the physical characteristics of microsponges were investigated. The optimized microsponges were dispersed into a hydrogel and evaluated. RESULTS & DISCUSSION: Spherical and porous EB microsponge particles were obtained. The optimized microsponges possessed particle size, drug content and entrapment efficiency of 24.5 µm, 43.31% and 91.44%, respectively. Microsponge-loaded gels demonstrated controlled release, nonirritancy to rat skin and antifungal activity. An in vivo skin deposition study demonstrated fourfold higher retention in the stratum corneum layer as compared with commercial cream. CONCLUSION: Developed ethyl cellulose microsponges could be potential pharmaceutical topical carriers of EB in antifungal therapy.


Assuntos
Antifúngicos/administração & dosagem , Celulose/análogos & derivados , Cicloeptanos/administração & dosagem , Sistemas de Liberação de Medicamentos , Imidazóis/administração & dosagem , Animais , Celulose/administração & dosagem , Difusão , Géis , Masculino , Ratos , Ratos Wistar , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...