Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401068, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477701

RESUMO

On-the-eye microsystems such as smart contacts for vision correction, health monitoring, drug delivery, and displaying information represent a new emerging class of low-profile (≤ 1 mm) wireless microsystems that conform to the curvature of the eyeball surface. The implementation of suitable low-profile power sources for eye-based microsystems on curved substrates is a major technical challenge addressed in this paper. The fabrication and characterization of a hybrid energy generation unit composed of a flexible silicon solar cell and eye-blinking activated Mg-O2 metal-air harvester capable of sustainably supplying electrical power to smart ocular devices are reported. The encapsulated photovoltaic device provides a DC output with a power density of 42.4 µW cm-2 and 2.5 mW cm-2 under indoor and outdoor lighting conditions, respectively. The eye-blinking activated Mg-air harvester delivers pulsed power output with a maximum power density of 1.3 mW cm-2 . A power management circuit with an integrated 11 mF supercapacitor is used to convert the harvesters' pulsed voltages to DC, boost up the voltages, and continuously deliver ≈150 µW at a stable 3.3 V DC output. Uniquely, in contrast to wireless power transfer, the power pack continuously generates electric power and does not require any type of external accessories for operation.

2.
Opt Express ; 31(10): 17027-17049, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157768

RESUMO

We demonstrate the implementation of a low-power, low-profile, varifocal liquid-crystal Fresnel lens stack suitable for tunable imaging in smart contact lenses. The lens stack consists of a high-order refractive-type liquid crystal Fresnel chamber, a voltage-controlled twisted nematic cell, a linear polarizer and a fixed offset lens. The lens stack has an aperture of 4 mm and thickness is ∼980 µm. The varifocal lens requires ∼2.5 VRMS for a maximum optical power change of ∼6.5 D consuming electrical power of ∼2.6 µW. The maximum RMS wavefront aberration error was 0.2 µm and the chromatic aberration was 0.008 D/nm. The average BRISQUE image quality score of the Fresnel lens was 35.23 compared to 57.23 for a curved LC lens of comparable power indicating a superior Fresnel imaging quality.

3.
ACS Appl Electron Mater ; 4(8): 4016-4022, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36035968

RESUMO

Supplying electric power to wearable IoT devices, particularly smart contact lenses (SCLs), is one of the main obstacles to widespread adoption and commercialization. In the present study, we have successfully designed, fabricated, and characterized semi-transparent, self-supported, and flexible single crystalline silicon solar cells using a single-sided micromachining procedure. Optical, mechanical, and electrical simulations, together with the practical measurements, verify the application of our developed solar cells to be mounted on a limited-footprint and flexible SCL. The 15 µm-thick silicon solar cells conformally fit on a dome-shaped contact lens (ROC = 8 mm) without any mechanical and electrical degradation. This homojunction photovoltaic device containing an array of micro-holes exhibits a V oc, J sc, and maximum power density of 504 mV, 6.48 mA cm-2, and 1.67 mW cm-2, respectively, at 25% visible light transparency under an AM1.5 one sun condition. Furthermore, the measurements were conducted under low-intensity indoor light conditions and resulted in a maximum power output of 25 and 42 µW cm-2 for the 50 and 25% transparent solar cells, respectively.

4.
IEEE Trans Biomed Eng ; 69(1): 390-400, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232861

RESUMO

OBJECTIVE: Presbyopia, an age-related ocular disorder, is characterized by the loss in the accommodative abilities of the human eye. Conventional methods of correcting presbyopia divide the field of view, thereby resulting in significant vision impairment. We demonstrate the design, assembly and evaluation of autofocusing eyeglasses for restoration of accommodation without dividing the field of view. METHODS: The adaptive optics eyeglasses comprise of two variable-focus liquid lenses, a time-of-flight range sensor and low-power, dual microprocessor control electronics, housed within an ergonomic frame. Subject-specific accommodation deficiency models were utilized to demonstrate high-fidelity accommodative correction. The abilities of this system to reduce accommodation deficiency, its power consumption, response time, optical performance and MTF were evaluated. RESULTS: Average corrected accommodation deficiencies for 5 subjects ranged from -0.021 D to 0.016 D. Each accommodation correction calculation was performed in ∼67 ms which consumed 4.86 mJ of energy. The optical resolution of the system was 10.5 cycles/degree, and featured a restorative accommodative range of 4.3 D. This system was capable of running for up to 19 hours between charge cycles and weighed ∼132 g. CONCLUSION: The design, assembly and performance of an autofocusing eyeglasses system to restore accommodation in presbyopes has been demonstrated. SIGNIFICANCE: The new autofocusing eyeglasses system presented in this article has the potential to restore pre-presbyopic levels of accommodation in subjects diagnosed with presbyopia.


Assuntos
Presbiopia , Acomodação Ocular , Óculos , Humanos , Óptica e Fotônica , Presbiopia/terapia , Acuidade Visual
5.
IEEE Trans Biomed Eng ; 68(7): 2203-2210, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33232221

RESUMO

OBJECTIVE: In this paper, we present a novel, low-profile, scleral-coil based, distance ranging system which is suitable for smart, accommodating contact lenses. METHODS: We measure the induced emf between a set of four thin semi-circular coils patterned on flexible Kapton substrates that conform to the eyes' sclera. This induced emf is a function of eye gaze angles. The system then determines the distance from the eyes to the desired object via the triangulation of these eye gaze angles Results: Experiments on eyeball simulated tissue gels indicate an accurate prediction of object distance in the 0.1-15 D range with a 0.15 D RMS error and object direction in the -15 to 15-degree arc with 0.4-degree RMS error, respectively. The energy required was determined to be as low as 20 µJ per range reading. CONCLUSION: Experimental data shows that our proposed new method of eye-tracking and distance ranging system can accurately predict eye-gaze angles and object-distance, whilst using only 20 µJ per range reading. SIGNIFICANCE: The high-accuracy, low-profile and reduced energy requirements of the proposed eye-tracking technique, make it suitable for applications in the vast field of adaptive optics such as smart contact lenses and other low-power vision corrective applications.


Assuntos
Lentes de Contato , Fixação Ocular , Esclera
6.
Appl Opt ; 58(23): 6446-6454, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31503794

RESUMO

Liquid-filled tunable-focus lenses have been demonstrated to be suitable for autofocus eyewear applications. Traditionally, these lenses are constructed using an elastomeric polymer chamber filled with a high-index liquid. In this work, we investigate the effect of elastomeric creep on the deformation and eventual degradation of these tunable lenses. We use numerical analysis of a deformable circular disk representative of the lens and provide rigorous experimental results testing the creep property of a number of elastomers. Finally, we provide a comparative study of different elastomeric materials and select the best one for this application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...