Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Spine (Phila Pa 1976) ; 44(13): E766-E773, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31205169

RESUMO

STUDY DESIGN: Reliability study. OBJECTIVE: To evaluate the applicability and reliability of 9.4T magnetic resonance imaging (MRI) in the assessment of degenerative disc disease compared with 3T MRI. SUMMARY OF BACKGROUND DATA: MRI is a reliable indicator of biochemical changes in the intervertebral disc (IVD) including hydration status, proteoglycan content, and disc degeneration compared with anatomical and histological studies. High-field 9.4T MRI has been shown to provide superior resolution and anatomical detail. However, it has not been tested against current standard MRI techniques. METHODS: Disc degeneration was initiated in 36 skeletally mature ewes 6 months prior to necropsy via validated surgical IVD injury models using either scalpel injury or drill-bit injury techniques at lumbar spine levels L2/3 and L3/4 with L1/2, L4/5, and L5/6 serving as control discs. All ex vivo IVDs were examined with 9.4T MRI and 3T MRI. All scans were analyzed using the Pfirrmann grading system by four independent observers. Intra- and interobserver reliability was assessed using kappa statistics and Spearman correlation. RESULTS: Inter- and intraobserver agreement for 9.4T MRI was excellent, both at κ 0.91 (P < 0.001). Comparatively, 3T interobserver reliability demonstrated substantial agreement at κ 0.61 (P < 0.001). Complete agreement was obtained in 92.7% to 100% of discs at 9.4T compared with 69.7% to 83.1% at 3T. A difference of one grade or more occurred in 6.7% at 9.4T and 39.3% at 3T. 9.4T MRI scored 97.3% of discs as grade 1 to 2 compared with 71.3% at 3T. 3T MRI tended to over-score the extent of disc degeneration with 28.6% of discs scored as grade 3 or higher compared with 2.7% at 9.4T MRI. CONCLUSION: 9.4T MRI study of IVD degeneration using the Pfirrmann grading system demonstrated excellent inter- and intraobserver reliability. Comparatively, 3T MRI demonstrated a tendency to over score the extent of disc degeneration. This improved reliability of 9.4T MRI holds great potential for its clinical applications. LEVEL OF EVIDENCE: 3.


Assuntos
Degeneração do Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética/normas , Animais , Biometria/métodos , Feminino , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Deslocamento do Disco Intervertebral/patologia , Vértebras Lombares/patologia , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Ovinos
3.
Global Spine J ; 8(8): 847-859, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30560038

RESUMO

STUDY DESIGN: Large animal research. OBJECTIVE: Lumbar discectomy is the most commonly performed spinal surgical procedure. We investigated 2 large animal models of lumbar discectomy in order to study the regenerative capacity of mesenchymal stem cells following disc injury. METHODS: Twelve adult ewes underwent baseline 3-T magnetic resonance imaging (MRI) followed by lumbar intervertebral disc injury by either drill bit (n = 6) or annulotomy and partial nucleotomy (APN) (n = 6). Necropsies were performed 6 months later. Lumbar spines underwent 3-T and 9.4-T MRI prior to histological, morphological and biochemical analysis. RESULTS: Drill bit-injured (DBI) and APN-injured discs demonstrated increased Pfirrmann grades relative to uninjured controls (P < .005), with no difference between the 2 models. Disc height index loss was greater in the APN group compared with the DBI group (P < .005). Gross morphology injury scores were higher in APN than DBI discs (P < .05) and both were higher than controls (P < .005). Proteoglycan was reduced in the discs of both injury models relative to controls (P < .005), but lower in the APN group (P < .05). Total collagen of the APN group disc regions was higher than DBI and control discs (P < .05). Histology revealed more matrix degeneration, vascular infiltration, and granulation in the APN model. CONCLUSION: Although both models produced disc degeneration, the APN model better replicated the pathobiology of human discs postdiscectomy. We therefore concluded that the APN model was a more appropriate model for the investigation of the regenerative capacity of mesenchymal stem cells administered postdiscectomy.

4.
J Spine Surg ; 4(1): 1-8, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29732417

RESUMO

BACKGROUND: Lumbar microdiscectomy is the most commonly performed spine surgery procedure. Over time it has evolved to a minimally invasive procedure. Traditionally patients were advised to restrict activity following lumbar spine surgery. However, post-operative instructions are heterogeneous. The purpose of this report is to assess, by survey, the perioperative care practices of Australasian neurosurgeons in the minimally invasive era. METHODS: A survey was conducted by email invitation sent to all full members of the Neurosurgical Society of Australasia (NSA). This consisted of 11 multi-choice questions relating to operative indications, technique, and post-operative instructions for lumbar microdiscectomy answered by an electronically distributed anonymized online survey. RESULTS: The survey was sent to all Australasian Neurosurgeons. In total, 68 complete responses were received (28.9%). Most surgeons reported they would consider a period of either 4 to 8 weeks (42.7%) or 8 to 12 weeks (32.4%) as the minimum duration of radicular pain adequate to offer surgery. Unilateral muscle dissection with unilateral discectomy was practiced by 76.5%. Operative microscopy was the most commonly employed method of magnification (76.5%). The majority (55.9%) always refer patients to undergo inpatient physiotherapy. Sitting restrictions were advised by 38.3%. Lifting restrictions were advised by 83.8%. CONCLUSIONS: Australasian neurosurgical lumbar microdiscectomy perioperative care practices are generally consistent with international practices and demonstrate a similar degree of heterogeneity. Recommendation of post-operative activity restrictions by Australasian neurosurgeons is still common. This suggests a role for the investigation of the necessity of such restrictions in the era of minimally invasive spine surgery.

5.
Spine J ; 18(3): 491-506, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29055739

RESUMO

BACKGROUND CONTEXT: Neural compression associated with lumbar disc herniation is usually managed surgically by microdiscectomy. However, 10%-20% of patients re-present with debilitating back pain, and approximately 15% require further surgery. PURPOSE: Using an ovine model of microdiscectomy, the present study investigated the relative potential of pentosan polysulfate-primed mesenchymal progenitor cells (pMPCs) or MPC alone implanted into the lesion site to facilitate disc recovery. STUDY DESIGN: An ovine model of lumbar microdiscectomy was used to compare the relative outcomes of administering MPCs or pMPCs to the injury site postsurgery. METHODS: At baseline 3T magnetic resonance imaging (MRI) of 18 adult ewes was undertaken followed by annular microdiscectomy at two lumbar disc levels. Sheep were randomized into three groups (n=6). The injured controls received no further treatment. Defects of the treated groups were implanted with a collagen sponge and MPC (5×105 cells) or pMPC (5×105 cells). After 6 months, 3T MRI and standard radiography were performed. Spinal columns were dissected, individual lumbar discs were sectioned horizontally, and nucleus pulposus (NP) and annulus fibrosus (AF) regions were assessed morphologically and histologically. The NP and AF tissues were dissected into six regions and analyzed biochemically for their proteoglycans (PGs), collagen, and DNA content. RESULTS: Both the MPC- and pMPC-injected groups exhibited less reduction in disc height (p<.05) and lower Pfirrmann grades (p≤.001) compared with the untreated injury controls, but morphologic scores for the pMPC-injected discs were lower (p<.05). The PG content of the AF injury site region (AF1) of pMPC discs was higher than MPC and injury control AF1 (p<.05). At the AF1 and contralateral AF2 regions, the DNA content of pMPC discs was significantly lower than injured control discs and MPC-injected discs. Histologic and birefringent microscopy revealed increased structural organization and reduced degeneration in pMPC discs compared with MPC and the injured controls. CONCLUSIONS: In an ovine model 6 months after administration of pMPCs to the injury site disc PG content and matrix organization were improved relative to controls, suggesting pMPCs' potential as a postsurgical adjunct for limiting progression of disc degeneration after microdiscectomy.


Assuntos
Discotomia/métodos , Degeneração do Disco Intervertebral/cirurgia , Disco Intervertebral/cirurgia , Transplante de Células-Tronco Mesenquimais/métodos , Poliéster Sulfúrico de Pentosana/farmacologia , Regeneração , Animais , Células Cultivadas , Disco Intervertebral/fisiologia , Região Lombossacral/cirurgia , Células-Tronco Mesenquimais/efeitos dos fármacos , Ovinos
6.
Stem Cell Res Ther ; 8(1): 278, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29237492

RESUMO

BACKGROUND: The pharmaceutical agent pentosan polysulfate (PPS) is known to induce proliferation and chondrogenesis of mesenchymal progenitor cells (MPCs) in vitro and in vivo. However, the mechanism(s) of action of PPS in mediating these effects remains unresolved. In the present report we address this issue by investigating the binding and uptake of PPS by MPCs and monitoring gene expression and proteoglycan biosynthesis before and after the cells had been exposed to limited concentrations of PPS and then re-established in culture in the absence of the drug (MPC priming). METHODS: Immuno-selected STRO-1+ mesenchymal progenitor stem cells (MPCs) were prepared from human bone marrow aspirates and established in culture. The kinetics of uptake, shedding, and internalization of PPS by MPCs was determined by monitoring the concentration-dependent loss of PPS media concentrations using an enzyme-linked immunosorbent assay (ELISA) and the uptake of fluorescein isothiocyanate (FITC)-labelled PPS by MPCs. The proliferation of MPCs, following pre-incubation and removal of PPS (priming), was assessed using the Wst-8 assay method, and proteoglycan synthesis was determined by the incorporation of 35SO4 into their sulphated glycosaminoglycans. The changes in expression of MPC-related cell surface antigens of non-primed and PPS-primed MPCs from three donors was determined using flow cytometry. RNA sequencing of RNA isolated from non-primed and PPS-primed MPCs from the same donors was undertaken to identify the genes altered by the PPS priming protocol. RESULTS: The kinetic studies indicated that, in culture, PPS rapidly binds to MPC surface receptors, followed by internalisation and localization within the nucleus of the cells. Following PPS-priming of MPCs and a further 48 h of culture, both cell proliferation and proteoglycan synthesis were enhanced. Reduced expression of MPC-related cell surface antigen expression was promoted by the PPS priming, and RNA sequencing analysis revealed changes in the expression of 42 genes. CONCLUSION: This study has shown that priming of MPCs with low concentrations of PPS enhanced chondrogenesis and MPC proliferation by modifying their characteristic basal gene and protein expression. These findings offer a novel approach to re-programming mesenchymal stem cells for clinical indications which require the repair or regeneration of cartilaginous tissues such as in osteoarthritis and degenerative disc disease.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Poliéster Sulfúrico de Pentosana/farmacologia , Antígenos de Superfície/metabolismo , Transporte Biológico , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Anotação de Sequência Molecular , Proteoglicanas/biossíntese
7.
Arthritis Res Ther ; 19(1): 180, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28768528

RESUMO

BACKGROUND: Few clinical trials have investigated the safety and efficacy of mesenchymal stem cells for the management of post-traumatic osteoarthritis. The objectives of this pilot study were to determine the safety and tolerability and to explore the efficacy of a single intra-articular injection of allogeneic human mesenchymal precursor cells (MPCs) to improve clinical symptoms and retard joint structural deterioration over 24 months in patients following anterior cruciate ligament (ACL) reconstruction. METHODS: In this phase Ib/IIa, double-blind, active comparator clinical study, 17 patients aged 18-40 years with unilateral ACL reconstruction were randomized (2:1) to receive either a single intra-articular injection of 75 million allogeneic MPCs suspended in hyaluronan (HA) (MPC + HA group) (n = 11) or HA alone (n = 6). Patients were monitored for adverse events. Immunogenicity was evaluated by anti-HLA panel reactive antibodies (PRA) against class I and II HLAs determined by flow cytometry. Pain, function, and quality of life were assessed using the Knee Injury and Osteoarthritis Outcome Score (KOOS) and SF-36v2 scores. Joint space width was measured from radiographs, and tibial cartilage volume and bone area assessed from magnetic resonance imaging (MRI). RESULTS: Moderate arthralgia and swelling within 24 h following injection that subsided were observed in 4 out of 11 in the MPC + HA group and 0 out of 6 HA controls. No cell-related serious adverse effects were observed. Increases in class I PRA >10% were observed at week 4 in the MPC + HA group that decreased to baseline levels by week 104. Compared with the HA group, MPC + HA-treated patients showed greater improvements in KOOS pain, symptom, activities of daily living, and SF-36 bodily pain scores (p < 0.05). The MPC + HA group had reduced medial and lateral tibiofemoral joint space narrowing (p < 0.05), less tibial bone expansion (0.5% vs 4.0% over 26 weeks, p = 0.02), and a trend towards reduced tibial cartilage volume loss (0.7% vs -4.0% over 26 weeks, p = 0.10) than the HA controls. CONCLUSIONS: Intra-articular administration of a single allogeneic MPC injection following ACL reconstruction was safe, well tolerated, and may improve symptoms and structural outcomes. These findings suggest that MPCs warrant further investigations as they may modulate some of the pathological processes responsible for the development of post-traumatic osteoarthritis following ACL reconstruction. TRIAL REGISTRATION: ClinicalTrials.gov ( NCT01088191 ) registration date: March 11, 2010.


Assuntos
Reconstrução do Ligamento Cruzado Anterior/métodos , Traumatismos do Joelho/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Osteoartrite do Joelho/terapia , Adolescente , Adulto , Reconstrução do Ligamento Cruzado Anterior/efeitos adversos , Artralgia/diagnóstico , Artralgia/etiologia , Método Duplo-Cego , Feminino , Humanos , Ácido Hialurônico/administração & dosagem , Injeções Intra-Articulares , Traumatismos do Joelho/complicações , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Osteoartrite do Joelho/etiologia , Dor/diagnóstico , Dor/etiologia , Estudos Prospectivos , Qualidade de Vida , Inquéritos e Questionários , Transplante Homólogo , Resultado do Tratamento , Adulto Jovem
8.
J Vis Exp ; (123)2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28570511

RESUMO

Intervertebral disc degeneration is a significant contributor to the development of back pain and the leading cause of disability worldwide. Numerous animal models of intervertebral disc degeneration have been developed. The ideal animal model should closely mimic the human intervertebral disc with regard to morphology, biomechanical properties and the absence of notochordal cells. The sheep lumbar intervertebral disc model fulfils these criteria. We present an ovine model of intervertebral disc degeneration utilizing a drill bit injury through a lateral retroperitoneal approach. The lateral approach significantly reduces the incision and potential morbidity associated with the traditional anterior approach to the ovine spine. Utilization of a drill-bit method of injury affords the ability to produce a consistent and reproducible injury, of precise dimensions, that initiates a consistent degree of intervertebral disc degeneration. The focal nature of the annular and nucleus pulposus defect more closely mimics the clinical condition of focal intervertebral disc herniation. Sheep recover rapidly following this procedure and are typically mobile and eating within the hour. Intervertebral disc degeneration ensues and sheep undergo necropsy and subsequent analysis at periods from eight weeks. We believe that the drill bit injury model of intervertebral disc degeneration offers advantages over more conventional annular injury models.


Assuntos
Modelos Animais de Doenças , Degeneração do Disco Intervertebral , Disco Intervertebral/lesões , Animais , Feminino , Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Ovinos
9.
Stem Cell Res Ther ; 8(1): 22, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28173831

RESUMO

BACKGROUND: The purpose of this study was to investigate the therapeutic efficacy of intravenously administered immunoselected STRO-3 + mesenchymal precursor cells (MPCs) on clinical scores, joint pathology and cytokine production in an ovine model of monoarthritis. METHODS: Monoarthritis was established in 16 adult merino sheep by administration of bovine type II collagen into the left hock joint following initial sensitization to this antigen. After 24 h, sheep were administered either 150 million allogeneic ovine MPCs (n = 8) or saline (n = 8) intravenously (IV). Lameness, joint swelling and pain were monitored and blood samples for leukocytes and cytokine levels were collected at intervals following arthritis induction. Animals were necropsied 14 days after arthritis induction and gross and histopathological evaluations were undertaken on tissues from the arthritic (left) and contralateral (right) joints. RESULTS: MPC-treated sheep demonstrated significantly reduced clinical signs of lameness, joint pain and swelling compared with saline controls. They also showed decreased cartilage erosions, synovial stromal cell activation and angiogenesis. This was accompanied by decreased infiltration of the synovial tissues by CD4+ lymphocytes and CD14+ monocytes/macrophages. Over the 3 days following joint arthropathy induction, the numbers of neutrophils circulating in the blood and plasma concentrations of activin A were significantly reduced in animals administered MPCs. CONCLUSIONS: The results of this study have demonstrated the capacity of IV-administered MPCs to mitigate the clinical signs and some of the inflammatory mediators responsible for joint tissue destruction in a large animal model of monoarthritis.


Assuntos
Antígenos de Superfície/imunologia , Artrite Experimental/terapia , Articulações/imunologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Ativinas/sangue , Animais , Antígenos de Superfície/genética , Artrite Experimental/induzido quimicamente , Artrite Experimental/genética , Artrite Experimental/patologia , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Diferenciação Celular , Movimento Celular , Colágeno Tipo II/administração & dosagem , Modelos Animais de Doenças , Feminino , Expressão Gênica , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-10/biossíntese , Interleucina-10/imunologia , Interleucina-17/biossíntese , Interleucina-17/imunologia , Articulações/patologia , Macrófagos/imunologia , Macrófagos/patologia , Células-Tronco Mesenquimais/imunologia , Monócitos/imunologia , Monócitos/patologia , Neutrófilos/imunologia , Neutrófilos/patologia , Carneiro Doméstico , Líquido Sinovial/química , Líquido Sinovial/citologia , Líquido Sinovial/imunologia , Resultado do Tratamento
10.
Biomed Res Int ; 2016: 5952165, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27314030

RESUMO

Lower back pain is the leading cause of disability worldwide. Discogenic pain secondary to intervertebral disc degeneration is a significant cause of low back pain. Disc degeneration is a complex multifactorial process. Animal models are essential to furthering understanding of the degenerative process and testing potential therapies. The adult human lumbar intervertebral disc is characterized by the loss of notochordal cells, relatively large size, essentially avascular nature, and exposure to biomechanical stresses influenced by bipedalism. Animal models are compared with regard to the above characteristics. Numerous methods of inducing disc degeneration are reported. Broadly these can be considered under the categories of spontaneous degeneration, mechanical and structural models. The purpose of such animal models is to further our understanding and, ultimately, improve treatment of disc degeneration. The role of animal models of disc degeneration in translational research leading to clinical trials of novel cellular therapies is explored.


Assuntos
Modelos Animais de Doenças , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/fisiopatologia , Disco Intervertebral/patologia , Disco Intervertebral/fisiopatologia , Pesquisa Translacional Biomédica/tendências , Animais , Humanos , Regeneração/fisiologia , Especificidade da Espécie
11.
J Neurosurg Spine ; 24(5): 715-26, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26799116

RESUMO

OBJECTIVE Disc degeneration and associated low-back pain are major causes of suffering and disability. The authors examined the potential of mesenchymal precursor cells (MPCs), when formulated with pentosan polysulfate (PPS), to ameliorate disc degeneration in an ovine model. METHODS Twenty-four sheep had annular incisions made at L2-3, L3-4, and L4-5 to induce degeneration. Twelve weeks after injury, the nucleus pulposus of a degenerated disc in each animal was injected with ProFreeze and PPS formulated with either a low dose (0.1 million MPCs) or a high dose (0.5 million MPCs) of cells. The 2 adjacent injured discs in each spine were either injected with PPS and ProFreeze (PPS control) or not injected (nil-injected control). The adjacent noninjured L1-2 and L5-6 discs served as noninjured control discs. Disc height indices (DHIs) were obtained at baseline, before injection, and at planned death. After necropsy, 24 weeks after injection, the spines were subjected to MRI and morphological, histological, and biochemical analyses. RESULTS Twelve weeks after the annular injury, all the injured discs exhibited a significant reduction in mean DHI (low-dose group 17.19%; high-dose group 18.01% [p < 0.01]). Twenty-four weeks after injections, the discs injected with the low-dose MPC+PPS formulation recovered disc height, and their mean DHI was significantly greater than the DHI of PPS- and nil-injected discs (p < 0.001). Although the mean Pfirrmann MRI disc degeneration score for the low-dose MPC+PPS-injected discs was lower than that for the nil- and PPS-injected discs, the differences were not significant. The disc morphology scores for the nil- and PPS-injected discs were significantly higher than the normal control disc scores (p < 0.005), whereas the low-dose MPC+PPS-injected disc scores were not significantly different from those of the normal controls. The mean glycosaminoglycan content of the nuclei pulposus of the low-dose MPC+PPS-injected discs was significantly higher than that of the PPS-injected controls (p < 0.05) but was not significantly different from the normal control disc glycosaminoglycan levels. Histopathology degeneration frequency scores for the low-dose MPC+PPS-injected discs were lower than those for the PPS- and Nil-injected discs. The corresponding high-dose MPC+PPS-injected discs failed to show significant improvements in any outcome measure relative to the controls. CONCLUSIONS Intradiscal injections of a formulation composed of 0.1 million MPCs combined with PPS resulted in positive effects in reducing the progression of disc degeneration in an ovine model, as assessed by improvements in DHI and morphological, biochemical, and histopathological scores.


Assuntos
Degeneração do Disco Intervertebral/patologia , Disco Intervertebral/patologia , Células-Tronco Mesenquimais , Poliéster Sulfúrico de Pentosana/farmacologia , Animais , Modelos Animais de Doenças , Disco Intervertebral/efeitos dos fármacos , Masculino , Ovinos
12.
Stem Cells Int ; 2015: 946031, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26074979

RESUMO

Low back pain and degenerative disc disease are a significant cause of pain and disability worldwide. Advances in regenerative medicine and cell-based therapies, particularly the transplantation of mesenchymal stem cells and intervertebral disc chondrocytes, have led to the publication of numerous studies and clinical trials utilising these biological therapies to treat degenerative spinal conditions, often reporting favourable outcomes. Stem cell mediated disc regeneration may bridge the gap between the two current alternatives for patients with low back pain, often inadequate pain management at one end and invasive surgery at the other. Through cartilage formation and disc regeneration or via modification of pain pathways stem cells are well suited to enhance spinal surgery practice. This paper will systematically review the current status of basic science studies, preclinical and clinical trials utilising cell-based therapies to repair the degenerate intervertebral disc. The mechanism of action of transplanted cells, as well as the limitations of published studies, will be discussed.

13.
PLoS One ; 10(5): e0124144, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25950840

RESUMO

BACKGROUND AND AIM: Mesenchymal precursor cells (MPC) are reported to possess immunomodulatory properties that may prove beneficial in autoimmune and other inflammatory conditions. However, their mechanism of action is poorly understood. A collagen-induced arthritis model has been previously developed which demonstrates local joint inflammation and systemic inflammatory changes. These include not only increased levels of inflammatory markers, but also vascular endothelial cell dysfunction, characterised by reduced endothelium-dependent vasodilation. This study aimed to characterise the changes in systemic inflammatory markers and endothelial function following the intravenous administration of MPC, in the ovine model. METHODS: Arthritis was induced in sixteen adult sheep by administration of bovine type II collagen into the hock joint following initial sensitisation. After 24h, sheep were administered either 150 million allogeneic ovine MPCs intravenously, or saline only. Fibrinogen and serum amyloid-A were measured in plasma to assess systemic inflammation, along with pro-inflammatory and anti-inflammatory cytokines. Animals were necropsied two weeks following arthritis induction. Coronary and digital arterial segments were mounted in a Mulvaney-Halpern wire myograph. The relaxant response to endothelium-dependent and endothelium-independent vasodilators was used to assess endothelial dysfunction. RESULTS AND CONCLUSION: Arthritic sheep treated with MPC demonstrated a marked spike in plasma IL-10, 24h following MPC administration. They also showed significantly reduced plasma levels of the inflammatory markers, fibrinogen and serum amyloid A, and increased HDL. Coronary arteries from RA sheep treated with MPCs demonstrated a significantly greater maximal relaxation to bradykinin when compared to untreated RA sheep (253.6 ± 17.1% of pre-contracted tone vs. 182.3 ± 27.3% in controls), and digital arteries also demonstrated greater endothelium-dependent vasodilation. This study demonstrated that MPCs given intravenously are able to attenuate systemic inflammatory changes associated with a monoarthritis, including the development of endothelial dysfunction.


Assuntos
Artrite Experimental/terapia , Endotélio Vascular/fisiopatologia , Fibrinogênio/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Proteína Amiloide A Sérica/metabolismo , Administração Intravenosa , Animais , Artrite Experimental/metabolismo , Artrite Experimental/fisiopatologia , Bradicinina/farmacologia , Bovinos , Vasos Coronários/citologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Interleucina-10/metabolismo , Ovinos , Vasodilatadores/farmacologia
14.
Neurosurg Rev ; 38(3): 429-45, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25749802

RESUMO

Degenerative conditions of the lumbar spine are extremely common. Ninety percent of people over the age of 60 years have degenerative change on imaging; however, only a small minority of people will require spine surgery (Hicks et al. Spine (Phila Pa 1976) 34(12):1301-1306, 2009). This minority, however, constitutes a core element of spinal surgery practice. Whilst the patient outcomes from spinal surgeries have improved in recent years, some patients will remain with pain and disability despite technically successful surgery. Advances in regenerative medicine and stem cell therapies, particularly the use of mesenchymal stem cells and allogeneic mesenchymal precursor cells, have led to numerous clinical trials utilising these cell-based therapies to treat degenerative spinal conditions. Through cartilage formation and disc regeneration, fusion enhancement or via modification of pain pathways, stem cells are well suited to enhance spinal surgery practice. This review will focus on the outcomes of lumbar spinal procedures and the role of stem cells in the treatment of degenerative lumbar conditions to enhance clinical practice. The current status of clinical trials utilising stem cell therapies will be discussed, providing clinicians with an overview of the various cell-based treatments likely to be available to patients in the near future.


Assuntos
Degeneração do Disco Intervertebral/cirurgia , Degeneração do Disco Intervertebral/terapia , Região Lombossacral , Procedimentos Neurocirúrgicos/métodos , Transplante de Células-Tronco/métodos , Terapia Combinada , Humanos , Transplante de Células-Tronco Mesenquimais/métodos
15.
World J Stem Cells ; 7(1): 65-74, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25621106

RESUMO

Low back pain is a common clinical problem, which leads to significant social, economic and public health costs. Intervertebral disc (IVD) degeneration is accepted as a common cause of low back pain. Initially, this is characterized by a loss of proteoglycans from the nucleus pulposus resulting in loss of tissue hydration and hydrostatic pressure. Conservative management, including analgesia and physiotherapy often fails and surgical treatment, such as spinal fusion, is required. Stem cells offer an exciting possible regenerative approach to IVD disease. Preclinical research has demonstrated promising biochemical, histological and radiological results in restoring degenerate IVDs. Cell tracking provides an opportunity to develop an in-depth understanding of stem cell survival, differentiation and migration, enabling optimization of stem cell treatment. Magnetic Resonance Imaging (MRI) is a non-invasive, non-ionizing imaging modality with high spatial resolution, ideally suited for stem cell tracking. Furthermore, novel MRI sequences have the potential to quantitatively assess IVD disease, providing an improved method to review response to biological treatment. Superparamagnetic iron oxide nanoparticles have been extensively researched for the purpose of cell tracking. These particles are biocompatible, non-toxic and act as excellent MRI contrast agents. This review will explore recent advances and issues in stem cell tracking and molecular imaging in relation to the IVD.

17.
J Neurosurg Spine ; 20(6): 657-69, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24702507

RESUMO

OBJECT: Following microdiscectomy, discs generally fail to undergo spontaneous regeneration and patients may experience chronic low-back pain and recurrent disc prolapse. In published studies, formulations of mesenchymal progenitor cells combined with pentosan polysulfate (MPCs+PPS) have been shown to regenerate disc tissue in animal models, suggesting that this approach may provide a useful adjunct to microdiscectomy. The goal of this preclinical laboratory study was to determine if the transplantation of MPCs+PPS, embedded in a gelatin/fibrin scaffold (SCAF), and transplanted into a defect created by microdiscectomy, could promote disc regeneration. METHODS: A standardized microdiscectomy procedure was performed in 18 ovine lumbar discs. The subsequent disc defects were randomized to receive either no treatment (NIL), SCAF only, or the MPC+PPS formulation added to SCAF (MPCs+PPS+SCAF). Necropsies were undertaken 6 months postoperatively and the spines analyzed radiologically (radiography and MRI), biochemically, and histologically. RESULTS: No adverse events occurred throughout the duration of the study. The MPC+PPS+SCAF group had significantly less reduction in disc height compared with SCAF-only and NIL groups (p < 0.05 and p < 0.01, respectively). Magnetic resonance imaging Pfirrmann scores in the MPC+PPS+SCAF group were significantly lower than those in the SCAF group (p = 0.0213). The chaotropic solvent extractability of proteoglycans from the nucleus pulposus of MPC+PPS+SCAF-treated discs was significantly higher than that from the SCAF-only discs (p = 0.0312), and using gel exclusion chromatography, extracts from MPC+PPS+SCAF-treated discs also contained a higher percentage of proteoglycan aggregates than the extracts from both other groups. Analysis of the histological sections showed that 66% (p > 0.05) of the MPC+PPS+SCAF-treated discs exhibited less degeneration than the NIL or SCAF discs. CONCLUSIONS: These findings demonstrate the capacity of MPCs in combination with PPS, when embedded in a gelatin sponge and sealed with fibrin glue in a microdiscectomy defect, to restore disc height, disc morphology, and nucleus pulposus proteoglycan content.


Assuntos
Disco Intervertebral/patologia , Disco Intervertebral/cirurgia , Vértebras Lombares/cirurgia , Transplante de Células-Tronco Mesenquimais , Poliéster Sulfúrico de Pentosana/farmacologia , Regeneração/fisiologia , Animais , Modelos Animais de Doenças , Discotomia , Masculino , Ovinos
18.
Biomaterials ; 34(37): 9430-40, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24050877

RESUMO

Intervertebral disc (IVD) degeneration is one of the leading causes of lower back pain and a major health problem worldwide. Current surgical treatments include excision or immobilisation, with neither approach resulting in the repair of the degenerative disc. As such, a tissue engineering-based approach in which stem cells, coupled with an advanced delivery system, could overcome this deficiency and lead to a therapy that encourages functional fibrocartilage generation in the IVD. In this study, we have developed an injectable hydrogel system based on enzymatically-crosslinked polyethylene glycol and hyaluronic acid. We examined the effects of adding pentosan polysulphate (PPS), a synthetic glycosaminoglycan-like factor that has previously been shown (in vitro and in vivo) to this gel system in order to induce chondrogenesis in mesenchymal precursor cells (MPCs) when added as a soluble factor, even in the absence of additional growth factors such as TGF-ß. We show that both the gelation rate and mechanical strength of the resulting hydrogels can be tuned in order to optimise the conditions required to produce gels with the desired combination of properties for an IVD scaffold. Human immunoselected STRO-1+ MPCs were then incorporated into the hydrogels. They were shown to retain good viability after both the initial formation of the gel and for longer-term culture periods in vitro. Furthermore, MPC/hydrogel composites formed cartilage-like tissue which was significantly enhanced by the incorporation of PPS into the hydrogels, particularly with respect to the deposition of type-II-collagen. Finally, using a wild-type rat subcutaneous implantation model, we examined the extent of any immune reaction and confirmed that this matrix is well tolerated by the host. Together these data provide evidence that such a system has significant potential as both a delivery vehicle for MPCs and as a matrix for fibrocartilage tissue engineering applications.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Disco Intervertebral/fisiologia , Transplante de Células-Tronco Mesenquimais , Poliéster Sulfúrico de Pentosana/uso terapêutico , Regeneração , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Linhagem Celular , Feminino , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/administração & dosagem , Injeções , Disco Intervertebral/cirurgia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Poliéster Sulfúrico de Pentosana/administração & dosagem , Ratos , Ratos Wistar
19.
Curr Stem Cell Res Ther ; 8(5): 381-93, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23971834

RESUMO

Spinal surgery involves the bone-cartilage-neural interface. It is a field of surgery that is rapidly changing and evolving; not only through the development of novel techniques, approaches and devices but also through evidence from large clinical trials assessing indications, efficacy and outcomes. The use of biologics in spine surgery has now become widespread. Biologics in the form of autologous or allogeneic stem cells or progenitor cells are not yet in routine clinical use in spine surgery. However it is likely that they will have a significant role in the future, since increasing numbers of preclinical and clinical studies have demonstrated the safety and efficacy of progenitor cells to treat a variety of spinal conditions. Such studies have paved the way to larger clinical trials. Cell therapies encompass a wide range of stem cell and progenitor cell types. Stem cells subtypes differ in their lineage potential often being described as pluripotent or multipotent, some of which have potential application in therapies to treat diseases of the spine having the ability to differentiate into tissues including bone and cartilage and to secrete factors that promote matrix repair and regeneration. Furthermore, studies have shown that some cells, particularly mesenchymal stromal cells, modulate oxidative stress and secrete cytokines and growth factors that have immunomodulatory, antiinflammatory, angiogenic and antiapoptotic effects. It is these combined characteristics that make cell based therapies prime candidates for advancing current techniques in spine surgery and for providing new strategies directed at targeting the underlying causes of spinal diseases and disorders to promote repair and regeneration. This review will explore the characteristics of various stem cells and other progenitor cells derived from different sources. The authors are not suggesting that all these cells are necessarily suitable clinically. The review will thus focus on their application to both current and potentially future areas of spine surgery based on results of the available evidence and clinical trials. This review will not address spinal cord injury.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Traumatismos da Medula Espinal/cirurgia , Coluna Vertebral/cirurgia , Transplante de Células-Tronco/métodos , Humanos , Células-Tronco Mesenquimais/citologia , Regeneração/genética , Traumatismos da Medula Espinal/patologia , Coluna Vertebral/patologia
20.
ScientificWorldJournal ; 2012: 873726, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028255

RESUMO

The sheep is becoming increasingly used as a large animal model for preclinical spine surgery studies. Access to the ovine lumbar intervertebral discs has traditionally been via an anterior or anterolateral approach, which requires larger wound incisions and, at times, significant abdominal retraction. We present a new minimally invasive operative technique for a far-lateral approach to the ovine lumbar spine that allows for smaller incisions, excellent visualisation of intervertebral discs, and minimal abdominal retraction and is well tolerated by animals with minimal morbidity.


Assuntos
Disco Intervertebral/cirurgia , Vértebras Lombares/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Ovinos/cirurgia , Animais , Modelos Animais de Doenças , Discotomia/métodos , Disco Intervertebral/lesões , Disco Intervertebral/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Reprodutibilidade dos Testes , Espaço Retroperitoneal/cirurgia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...