Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874537

RESUMO

We present emergent behaviour of storing mechanical deformation in compressed soft cellular materials (a network of soft polymeric rods). Under an applied compressive strain field, the soft cellular material transits from an elastic regime to a 'pseudo-plastic' regime (not to be confused with pseudoplasticity in fluids). In the elastic phase, it is capable of forgetting (or relaxing) any applied indentation once the applied indentation is removed. This relaxation will be determined by the visco-elasticity and internal relaxation timescales in polymeric hyperelastic cellular materials. In the pseudo-plastic phase, however, the material is capable of storing local indentation (or deformation) indefinitely. This deformation can be erased via removal of the external strain field and is therefore reversible. We characterise this behaviour experimentally and present a simple model that makes use of friction for understanding this behavior.

2.
Proc Natl Acad Sci U S A ; 121(11): e2320337121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442154

RESUMO

The usual basis to analyze heat transfer within materials is the equation formulated 200 years ago, Fourier's law, which is identical mathematically to the mass diffusion equation, Fick's law. Revisiting this assumption regarding heat transport within translucent materials, performing the experiments in vacuum to avoid air convection, we compare the model predictions to infrared-based measurements with nearly mK temperature resolution. After heat pulses, we find macroscale non-Gaussian tails in the surface temperature profile. At steady state, we find macroscale anomalous hot spots when the sample is topographically rough, and this is validated by using two additional independent methods to measure surface temperature. These discrepancies from Fourier's law for translucent materials suggest that internal radiation whose mean-free-path is millimeters interacts with defects to produce small heat sources that by secondary emission afford an additional, non-local mode of heat transport. For these polymer and inorganic glass materials, this suggests unique strategies of heat management design.

3.
J Biomol Struct Dyn ; : 1-14, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373072

RESUMO

Breast cancer is considered to be happened due to genetic aberration. Out of several genes expressed, it is found that cadherin 1, type 1 (CDH1) is responsible in several ways to control the metabolic order in human. Deregulation of the function of protein E-cadherin, expressed from CDH1 plays an important role in lobular breast cancer. In order to understand the root cause of this recent claim, we focus on CDH1 gene: whether the genetic information translated due to any deviation/alteration/modification in its sequence is related to the occurrence of the different types breast cancer. Towards this end, quantitative analysis of different biophysical and bio-chemical properties of CDH1 gene in genomic and proteomic levels from the available genomic (cDNA) sequences of CDH1 gene (obtained from the COSMIC Database for 78 patients, suffering from various types of breast cancer) clearly emphasizes that alternation/modification in the sequence of the CDH1 gene can be detrimental. Furthermore, Random forest, K-nearest neighbour and stochastic gradient descent (SGD) algorithms are applied on the derived dataset to classify the types of breast cancer, and to validate our hypothesis regarding the acute role of CDH1 as potential bio marker for breast cancer. Analysis of the mutated CDH1 gene sequences, and their related parameters using aforesaid machine learning techniques clearly establish that CDH1 gene can take the deterministic role in predicting the chances of occurrences of different types of breast cancer with an accuracy of >90%. Such an observation opens a new paradigm in diagnostic approach of breast cancer.Communicated by Ramaswamy H. Sarma.

4.
J Biomol Struct Dyn ; : 1-11, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37278375

RESUMO

As 20 naturally occurring amino acids are coded by 61 mRNA codons out of 64, it is obvious that 61→20 cannot have one-to-one mapping which generates the problem of codon degeneracy. Despite several efforts there is no specific outcome which can describe this well-known enigmatic degeneracy of the codon table. Since, every biological behaviour is regulated by protein which in turn consists of amino acids bearing the inherent characteristics of degeneracy among mRNA codons (Crick F.H.C. The Origin of the Genetic Code. J. Mol. Biol.1968; 38: 367-379), it is worthy to analyse the impact of such degeneracy on biological behaviours. Here, based on mathematical models using the concept of b-type of the nucleotide bases and hamming distances, an effort has been initiated to understand the impact of biasness of genetic code degeneracy on biological behaviours. The proposed models have been utilized to understand the characteristic features of bacterial genes of gram-positive and gram-negative bacteria. To the best of our knowledge, this is the first mathematical model to capture the effect of genetic code degeneracy, showing a paradigm towards understanding the behavioural difference between gram-positive and gram-negative bacteria, and thereby opening a new avenue for revealing differential biological properties.Communicated by Ramaswamy H. Sarma.

5.
Phys Rev Lett ; 129(18): 188002, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36374694

RESUMO

Under the influence of oscillatory shear, a monolayer of frictional granular disks exhibits two dynamical phase transitions: a transition from an initially disordered state to an ordered crystalline state and a dynamic active-absorbing phase transition. Although there is no reason a priori for these to be at the same critical point, they are. The transitions may also be characterized by the disk trajectories, which are nontrivial loops breaking time-reversal invariance.

6.
Phys Rev E ; 105(3-1): 034140, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35428086

RESUMO

The dynamics of n rigid objects, each having d degrees of freedom, is played out in the configuration space of dimension nd. Being rigid, there are additional constraints at work that renders a portion of the configuration space inaccessible. In this paper, we make the assertion that treating the overall dynamics as a Markov process whose states are defined by the number of contacts made between the rigid objects provides an effective coarse-grained characterization of the otherwise complex phenomenon. This coarse graining reduces the dimensionality of the space from nd to one. We test this assertion for a one-dimensional array of curved squares each of which is undergoing a biased diffusion in its angular orientation.

7.
Phys Rev E ; 104(3): L033001, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34654140

RESUMO

We investigate experimentally the dynamic phase transition from compressed to buckled phases for thin sheets of rubber. We find that the rubber strips enter a highly compressed, metastable state when compression speed is high. During the compressed phase, higher modes grow, followed by mode coarsening. Mode growth is accompanied by an expansion of length while the system is still being compressed. We measure the forces and length of the sheet to confirm this, and we develop a mechanism for how modes grow and coarsen during dynamical buckling. The influence of crucial control parameters in the experiments, such as the material cross section and compression speed, on the buckling dynamics, are explained theoretically.

8.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-33952726

RESUMO

Among all the proteins of Periplasmic C type Cytochrome family obtained from cytochrome C7 found in Geobacter sulfurreducens, only the Periplasmic C type Cytochrome A (PPCA) protein can recognize the deoxycholate (DXCA), while its other paralogs do not, as observed from the crystal structures. Though some existing works have used graph-theoretic approaches to realize the 3-D structural properties of proteins, its usage in the rationalisation of the physiochemical behavior of proteins has been very limited. To understand the driving force towards the recognition of DXCA exclusively by PPCA among its paralogs, in this work, we propose two graph theoretic models based on the combinatorial properties, namely, base-pair-type and impact, of the nucleotide bases and the amino acid residues, respectively. Combinatorial analysis of the binding sequences using the proposed base-pair type based graph theoretic model reveals the differential behaviour of PPCA among its other paralogs. Further, to investigate the underlying chemical phenomenon, another graph theoretic model has been developed based on impact. Analysis of the results obtained from impact-based model clearly indicates towards the helix formation of PPCA which is essential for the recognition of DXCA, making PPCA a completely different entity from its paralogs.


Assuntos
Grupo dos Citocromos c/química , Ácido Desoxicólico/química , Geobacter/química , Modelos Químicos , Proteínas de Bactérias/química , Conformação Proteica
9.
J Phys Condens Matter ; 33(29)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33975297

RESUMO

In this paper, we study the structure of the solid selenium (Se) formed by the vapor deposition method. We provide direct visual evidence that faceted crystal-like shapes obtained from vapor phase deposition are a self-assembly of linear strands that have a persistence length of 10µm. These strands are held together by weak forces and can easily be separated. These chains occasionally get entangled to form chiral structures and often meander about destroying long range orientation and translation order in a continuous manner. Moreover, it is easy for the long strands of linear chains to slide past the neighboring ones, and hence the system has a large concentration of disinclination like defects in addition to the defects caused by the entanglement of the chains. Like organic polymers, the obtained Se structures also exhibit a spread in the melting temperature. This spread is closely related to the density of the sub-structures present in the system. The infrared imaging shows that these structures heat up in an inhomogeneous manner and the cross polarized images show that the process of melting initiates in the bulk.

10.
Rev Sci Instrum ; 92(12): 123902, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34972466

RESUMO

We present a method for modifying a continuous flow cryostat and a steel plate DAC (Diamond Anvil Cell) to perform high pressure micro-Raman experiments at low temperatures. Despite using a steel DAC with a lower specific heat capacity (∼335 J/kg K), this setup can routinely perform high pressure (∼10 GPa) measurements at temperatures as low as 26 K. This adaptation is appropriate for varying the temperature of the sample while keeping it at a constant pressure. We determined that the temperature variation across the sample chamber is about 1 K using both direct temperature measurements and finite element analysis of the heat transport across the DAC. We present Raman spectroscopy results on elemental selenium at high pressures and low temperatures using our modified setup.

11.
Phys Fluids (1994) ; 32(9): 093304, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32982134

RESUMO

N95 respirators comprise a critical part of the personal protective equipment used by frontline health-care workers and are typically meant for one-time usage. However, the recent COVID-19 pandemic has resulted in a serious shortage of these masks leading to a worldwide effort to develop decontamination and re-use procedures. A major factor contributing to the filtration efficiency of N95 masks is the presence of an intermediate layer of charged polypropylene electret fibers that trap particles through electrostatic or electrophoretic effects. This charge can degrade when the mask is used. Moreover, simple decontamination procedures (e.g., use of alcohol) can degrade any remaining charge from the polypropylene, thus severely impacting the filtration efficiency post-decontamination. In this report, we summarize our results on the development of a simple laboratory setup allowing measurement of charge and filtration efficiency in N95 masks. In particular, we propose and show that it is possible to recharge the masks post-decontamination and recover filtration efficiency.

12.
R Soc Open Sci ; 7(2): 200011, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32257358

RESUMO

It is of interest to fabricate curved surfaces in three dimensions from homogeneous material in the form of flat sheets. The aim is not just to obtain a surface which has a desired intrinsic Riemannian metric, but to get the desired embedding in R 3 up to translations and rotations. In this paper, we demonstrate three generic methods of moulding a flat sheet of thermo-responsive plastic by selective contraction induced by targeted heating. These methods do not involve any cutting and gluing, which is a property they share with origami. The first method is inspired by tailoring, which is the usual method for making garments out of plain pieces of cloth. Unlike usual tailoring, this method produces the desired embedding in R 3 . The second method just aims to bring about the desired new Riemannian metric via an appropriate pattern of local contractions, without directly controlling the embedding. The third method is based on triangulation, and seeks to induce the desired local distances. This results in getting the desired embedding in R 3 . The second and the third methods, and also the first method for the special case of surfaces of revolution, are algorithmic in nature. We explain these methods and show examples.

13.
Sci Rep ; 7(1): 4449, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28667268

RESUMO

Keeping current interests to identify materials with intrinsic magnetodielectric behaviour near room temperature and with novel pyroelectric current anomalies, we report temperature and magnetic-field dependent behavior of complex dielectric permittivity and pyroelectric current for an oxide, Li2Ni2Mo3O12, containing magnetic ions with (distorted) honey-comb and chain arrangement and ordering magnetically below 8 K. The dielectric data reveal the existence of relaxor ferroelectricity behaviour in the range 160-240 K and there are corresponding Raman mode anomalies as well in this temperature range. Pyrocurrent behavior is also consistent with this interpretation, with the pyrocurrent peak-temperature interestingly correlating with the poling temperature. 7Li NMR offer an evidence for crystallographic disorder intrinsic to this compound and we therefore conclude that such a disorder is apparently responsible for the randomness of local electric field leading to relaxor ferroelectric property. Another observation of emphasis is that there is a notable decrease in the dielectric constant with the application of magnetic field to the tune of about -2.4% at 300 K, with the magnitude varying marginally with temperature. Small loss factor values validate the intrinsic behaviour of the magnetodielectric effect at room temperature.

14.
J Phys Condens Matter ; 29(35): 355001, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28649973

RESUMO

In this note we introduce a hierarchy of phase spaces for static friction, which give a graphical way to systematically quantify the directional dependence in static friction via subregions of the phase spaces. We experimentally plot these subregions to obtain phenomenological descriptions for static friction in various examples where the macroscopic shape of the object affects the frictional response. The phase spaces have the universal property that for any experiment in which a given object is put on a substrate fashioned from a chosen material with a specified nature of contact, the frictional behaviour can be read off from a uniquely determined classifying map on the control space of the experiment which takes values in the appropriate phase space.

15.
Phys Rev E ; 95(4-1): 042903, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28505718

RESUMO

Magic sand, a hydrophobic toy granular material, is widely used in popular science instructions because of its nonintuitive mechanical properties. A detailed study of the failure of an underwater column of magic sand shows that these properties can be traced to a single phenomenon: the system self-generates a cohesive skin that encapsulates the material inside. The skin, consisting of pinned air-water-grain interfaces, shows multiscale mechanical properties: they range from contact-line dynamics in the intragrain roughness scale, to plastic flow at the grain scale, all the way to sample-scale mechanical responses. With decreasing rigidity of the skin, the failure mode transforms from brittle to ductile (both of which are collective in nature) to a complete disintegration at the single-grain scale.

16.
Soft Matter ; 12(6): 1759-64, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26693675

RESUMO

Efficient mixing strategies in a fluid involve generation of multi-scale flows which are strongly suppressed in highly viscous systems. In this work, we report a novel form of multi-scale flow, driven by an external electric field, in a highly viscous (η∼ 1 Pa s) oil-in-oil emulsion system consisting of micron-size droplets. This electro-hydrodynamic flow leads to dynamical organization at spatial scales much larger than that of the individual droplets. We characterize the dynamics associated with these structures by measuring the time variation of the bulk Reynolds stress in a rheometer, as well as through a micro-scale rheometric measurement by probing the spectrum of fluctuations of a thin fiber cantilever driven by these flows. The results display scale invariance in the energy spectra over three decades with a power law reminiscent of turbulent convection. We also demonstrate the mixing efficiency in such micro-scale systems.

17.
Proc Natl Acad Sci U S A ; 112(37): 11443-8, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26324918

RESUMO

A monolayer of granular spheres in a cylindrical vial, driven continuously by an orbital shaker and subjected to a symmetric confining centrifugal potential, self-organizes to form a distinctively asymmetric structure which occupies only the rear half-space. It is marked by a sharp leading edge at the potential minimum and a curved rear. The area of the structure obeys a power-law scaling with the number of spheres. Imaging shows that the regulation of motion of individual spheres occurs via toggling between two types of motion, namely, rolling and sliding. A low density of weakly frictional rollers congregates near the sharp leading edge whereas a denser rear comprises highly frictional sliders. Experiments further suggest that because the rolling and sliding friction coefficients differ substantially, the spheres acquire a local time-averaged coefficient of friction within a large range of intermediate values in the system. The various sets of spatial and temporal configurations of the rollers and sliders constitute the internal states of the system. Experiments demonstrate and simulations confirm that the global features of the structure are maintained robustly by autotuning of friction through these internal states, providing a previously unidentified route to self-organization of a many-body system.

18.
J Phys Condens Matter ; 27(41): 415404, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26418969

RESUMO

Arguments based on the Mermin-Wagner theorem suggest that the quasi-1D trigonal phase of Se should be unstable against long wavelength perturbations. Consisting of parallel Se-Se chains, this essentially fragile solid undergoes a partial transition to a monoclinic structure (consisting of 8-membered rings) at low temperatures (≈50 K), and to a distorted trigonal phase at moderate pressures (≈3GPa). Experimental investigations on sub-millimeter-sized single crystals provide clear evidence that these transitions occur via a novel and counter-intuitive route. This involves the reversible formation of an intermediate, disordered structure that appears as a minority phase with increasing pressure as well as with decreasing temperature. The formation of the disordered state is indicated by: (a) a 'Boson-peak' that appears at low temperatures in the specific heat and resonance Raman data, and (b) a decrease in the intensity of Raman lines over a relatively narrow pressure range. We complement the experimental results with a phenomenological model that illustrates how a first order structural transition may lead to disorder. Interestingly, nanocrystals of trigonal Se do not undergo any structural transition in the parameter space studied; neither do they exhibit signs of disorder, further underlining the role of disorder in this type of structural transition.

19.
Sci Rep ; 4: 5636, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25005869

RESUMO

Observation of ferroelectricity among non-d(0) systems, which was believed for a long time an unrealistic concept, led to various proposals for the mechanisms to explain the same (i.e. magnetically induced ferroelectricity) during last decade. Here, we provide support for ferroelectricity of a displacive-type possibly involving magnetic ions due to short-range magnetic correlations within a spin-chain, through the demonstration of magnetoelectric coupling in a Haldane spin-chain compound Er2BaNiO5 well above its Néel temperature of (TN = ) 32 K. There is a distinct evidence for electric polarization setting in near 60 K around which there is an evidence for short-range magnetic correlations from other experimental methods. Raman studies also establish a softening of phonon modes in the same temperature (T) range and T-dependent x-ray diffraction (XRD) patterns also reveal lattice parameters anomalies. Density-functional theory based calculations establish a displacive component (similar to d(0)-ness) as the root-cause of ferroelectricity from (magnetic) NiO6 chain, thereby offering a new route to search for similar materials near room temperature to enable applications.

20.
Sci Rep ; 4: 5275, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24919483

RESUMO

We report on the spreading of triboelectrically charged glass particles on an oppositely charged surface of a plastic cylindrical container in the presence of a constant mechanical agitation. The particles spread via sticking, as a monolayer on the cylinder's surface. Continued agitation initiates a sequence of instabilities of this monolayer, which first forms periodic wavy-stripe-shaped transverse density modulation in the monolayer and then ejects narrow and long particle-jets from the tips of these stripes. These jets finally coalesce laterally to form a homogeneous spreading front that is layered along the spreading direction. These remarkable growth patterns are related to a time evolving frictional drag between the moving charged glass particles and the countercharges on the plastic container. The results provide insight into the multiscale time-dependent tribolelectric processes and motivates further investigation into the microscopic causes of these macroscopic dynamical instabilities and spatial structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...