Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(16): 4879-4886, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35410475

RESUMO

We quantitatively investigate the role of voltage fluctuation in terms of different waveforms on the electrodeposition dynamics and morphology for varying electrolyte concentrations. Dependent on the electrolyte concentration, a wide range of morphologies ranging from highly branched dendrites to comparatively closed packed electrodeposits has been captured. We mechanistically map the deposition dynamics by image analysis and demonstrate the highly porous dendritic dynamics to be independent of external perturbation. Additionally, comparatively closed packed morphological features show significant sensitivity toward the frequency and nature of the waveforms. The results provide fundamental insights into the correlation between the time scales of voltage fluctuation and growth dynamics. We comprehensively analyze the effect of the waveform nature on the average deposition height and show sinusoidal fluctuation to be preferred over square and pulse for metal batteries for lower deposition heights.

2.
Soft Matter ; 14(36): 7335-7346, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30033474

RESUMO

Microscopic investigations of any abnormality associated with erythrocyte/red blood cell morphology constitute an important segment of the age-old peripheral smear test. Though the test is conducted on a glass slide, the effect of glass and similar other solid substrates on erythrocyte morphology remained majorly unexplored. In the first of its kind investigation, we have outlined the effect of varying the substrate surface potential on erythrocyte morphology. Such a substrate induced phenomenon has been quantified for two distinctly different drying configurations (droplets and film) upon systematically varying the cell concentration. Experimental results and supporting theoretical analysis unambiguously show the surface potential of the solid substrate to be the most influential parameter in the process of morphological alteration. The findings of the present investigation may be utilized to formulate an error-free protocol for the baseline peripheral smear test of hematological diagnosis.


Assuntos
Eritrócitos/citologia , Adulto , Humanos , Masculino , Propriedades de Superfície
3.
Langmuir ; 34(43): 12665-12679, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29664644

RESUMO

The balance of intermolecular and surface forces plays a critical role in the transport phenomena near the contact line region of an extended meniscus in several technologically important processes. Externally applied fields can alter the equilibrium and stability of the meniscus with concomitant effects on its shape and spreading characteristics and may even lead to an oscillation. This feature article provides a detailed account of the present and past efforts in exploring the behavior of curved thin liquid films subjected to mild thermal perturbations, heat input, and electrical and magnetic fields for pure as well as colloidal suspensions, including the effects of particle charge and polarity. The shape-dependent intermolecular force field has been evaluated in situ by a nonobtrusive optical technique utilizing the interference phenomena and subsequent image processing. The critical role of disjoining pressure is identified along with the determination of the Hamaker constant. The spatial and temporal variations of the capillary forces are evaluated for the advancing and receding menisci. The Maxwell-stress-induced enhanced spreading during electrowetting, at relatively low voltages, and that due to the application of a magnetic field are discussed with respect to their distinctly different characteristics and application potentials. The use of the augmented Young-Laplace equation elicited additional insights into the fundamental physics for flow in ultrathin liquid films.

4.
J Biomech ; 55: 34-40, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28279400

RESUMO

The physical environment surrounding an animal has a significant impact on its behavior. The nematode Caenorhabditis elegans (C. elegans) has proved to be an excellent choice for understanding the adaptability of organisms crawling on soft surfaces. In this work, we investigate the modulation of C. elegans' behavioral kinematics in response to changes in the stiffness of the substrate and study the effect of grooves incised by the worms on their locomotion speed and efficiency. We measure the height of the grooves created by the animals on surfaces with different rigidity using confocal microscopy. Our results indicate that the kinematic properties of C. elegans, including amplitude (A), wavelength (λ) and frequency (f) of head turns depend strongly on surface properties and the height of the grooves created by them. During crawling, we observe that the animal assumes two distinct shapes depending on the stiffness of substrates. As the stiffness increases, the worm's body shape changes gradually from a 'W' shape, which is characterized by low amplitude curvature to the more common 'S' shape, which is characterized by high amplitude curvature, at intermediate values and back to 'W' on stiffer substrates. Although the efficiency is found to vary monotonically with surface stiffness, the forward velocity shows a non-monotonic behavior with the maximum on a surface, where the animal makes the 'S' shape.


Assuntos
Caenorhabditis elegans/fisiologia , Locomoção , Fenômenos Mecânicos , Animais , Fenômenos Biomecânicos , Microscopia Confocal
5.
Langmuir ; 32(48): 12790-12798, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27802599

RESUMO

Exercising control over the evaporation of colloidal suspensions is pivotal to modulate the coating characteristics for specific uses, wherein the interactions among the liquid, the particles, and the substrate control the process. In the present study, the contact line dynamics of a receding colloidal liquid film consisting of particles of distinctly different sizes (nominal diameters 0.055 and 1 µm and surface unmodified) during evaporation is analyzed. The role of the liquid polarity is also investigated by replacing the polar liquid (water) with a relatively nonpolar liquid (isopropyl alcohol) in the colloidal suspension. The characteristics of the evaporating receding meniscus, namely, the film thickness and the curvature are experimentally evaluated using an image-analyzing interferometry technique. The experimental results are assessed in conjunction with the augmented Young-Laplace equation, highlighting the roles of the relevant components of the disjoining pressure and the polarity of the liquid involved in the colloidal suspension.

6.
Langmuir ; 31(41): 11269-78, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26422170

RESUMO

Electrically actuated transport dynamics of colloidal droplets, on a hydrophobic dielectric film covering an array of electrodes, is studied here. Specifically, the effects of the size and electrical properties (zeta-potential) of the colloidal particles on such transport characteristics are investigated. For the colloidal droplets, the application of an electrical voltage leads to additional attenuation of the local dielectric-droplet interfacial tension. This is due to the electrically triggered enhanced colloidal particle adsorption at the dielectric-droplet interface, in the immediate vicinity of the droplet three-phase contact line (TPCL). The extent of such interfacial particle adsorption, and hence, the extent of the consequential reduction in the interfacial tension, is dictated by the combined effects of the three-phase contact line spreading, particle size, the interfacial electrostatic interaction between the colloidal particles (if charged) and the charged dielectric surface above the activated electrode, and the interparticle electrostatic repulsion. The electrical driving force of varying magnitude, stemming from this altered solid-liquid interfacial tension gradient in the presence of the colloidal particles, culminates in different droplet transport velocity and droplet transfer frequency for different colloidal droplets. We substantiate the inferences from our experimental results by a quasi-steady state force balance model for colloidal droplet transport. We believe that the present work will provide an accurate framework for determining the optimal design and operational parameters for digital microfluidic chips handling colloidal droplets, as encountered in a plethora of applications.

7.
Langmuir ; 31(22): 6001-10, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25973978

RESUMO

The effect of surface wettability on the dynamics of crack formation and their characteristics are examined during the drying of aqueous colloidal droplets (1 µL volume) containing nanoparticles (53 nm mean particle diameter, 1 w/w %). Thin colloidal films, formed during drying, rupture as a result of the evaporation-induced capillary pressure and exhibit microscopic cracks. The crack initiation and propagation velocity as well as the number of cracks are experimentally evaluated for substrates of varying wettability and correlated to their wetting nature. Atomic force and scanning electron microscopy are used to examine the region in the proximity of the crack including the particle arrangements near the fracture zone. The altered substrate-particle Derjaguin-Landau-Verwey-Overbeek (DLVO) interactions, as a consequence of the changed wettability, are theoretically evaluated and found to be consistent with the experimental observations. The resistance of the film to cracking is found to depend significantly on the substrate surface energy and quantified by the critical stress intensity factor, evaluated by analyzing images obtained from confocal microscopy. The results indicate the possibility of controlling crack dynamics and morphology by tuning the substrate wettability.

8.
Langmuir ; 31(14): 4160-8, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25790194

RESUMO

It is observed that the presence of negatively charged, suspended nanoparticles significantly changes the electric-field-induced spreading and contact line dynamics of partially wetting liquid films. Image-analyzing interferometry is used to accurately measure the meniscus profile, including the spatial change in the meniscus curvature. The nanoparticle-containing meniscus exhibits enhanced spreading with an increase in the particle size and weight fraction. The instantaneous contact line velocities are measured using video microscopy and a frame-by-frame analysis of the extracted images. The effects of electric field polarity reversal on the flow toward the contact line are explored as well. The movement of the meniscus is analyzed taking into account the capillary forces and Maxwell-stress-induced flows. An analytical model based on the Young-Laplace equation is used to analyze the electric-field-induced contact line motion, and the model-predicted velocities are compared to the experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...