Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(24): 16241-16247, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37266495

RESUMO

In this communication, we demonstrate uniaxial strain relaxation in monolayer (1L) MoS2 transpires through cracks in both single and double-grain flakes. Chemical vapour deposition (CVD) grown 1L MoS2 has been transferred onto polyethylene terephthalate (PET) and poly(dimethylsiloxane) (PDMS) substrates for low (∼1%) and high (1-6%) strain measurements. Both Raman and photoluminescence (PL) spectroscopy revealed strain relaxation via cracks in the strain regime of 4-6%. In situ optical micrographs show the formation of large micron-scale cracks along the strain axis and ex situ atomic force microscopy (AFM) images reveal the formation of smaller lateral cracks due to the strain relaxation. Finite element simulation has been employed to estimate the applied strain efficiency as well as to simulate the strain distribution for MoS2 flakes. The present study reveals the uniaxial strain relaxation mechanism in 1L MoS2 and paves the way for exploring strain relaxation in other transition metal dichalcogenides (TMDCs) as well as their heterostructures.

2.
Nanoscale ; 14(14): 5289-5313, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322836

RESUMO

Light plays an essential role in our world, with several technologies relying on it. Photons will also play an important role in the emerging quantum technologies, which are primed to have a transformative effect on our society. The development of single-photon sources and ultra-sensitive photon detectors is crucial. Solid-state emitters are being heavily pursued for developing truly single-photon sources for scalable technology. On the detectors' side, the main challenge lies in inventing sensitive detectors operating at sub-optical frequencies. This review highlights the promising research being conducted for the development of quantum emitters and detectors based on two-dimensional van der Waals (2D-vdW) materials. Several 2D-vdW materials, from canonical graphene to transition metal dichalcogenides and their heterostructures, have generated a lot of excitement due to their tunable emission and detection properties. The recent developments in the creation, fabrication and control of quantum emitters hosted by 2D-vdW materials and their potential applications in integrated photonic devices are discussed. Furthermore, the progress in enhancing the photon-counting potential of 2D material-based detectors, viz. 2D photodetectors, bolometers and superconducting single-photon detectors functioning at various wavelengths is also reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA