Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Bull ; 234(2): 116-129, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29856671

RESUMO

Although pigments contribute to much of the brilliant purple and orange coloration of the aeolid nudibranch Flabellina iodinea, the optical appearance of the animal was found to be augmented by dynamically sparkling, brightly reflective material in cells located throughout its epidermis. Electron microscopy revealed that specialized cells most abundant near the epithelial basal lamina contain numerous multilayer stacks of crystals, each within a fragile membrane capsule. High-resolution light microscopy of tissue sections showed that these crystalline stacks intermittently reflect light, with a temporally dynamic, sparkling appearance, suggesting that they are free to move-a phenomenon also observed in the live, intact whole animal and in the purified crystal stacks as well. Thin-layer chromatography and ultraviolet spectrometry show that the crystals isolated from all epithelial tissues are identical in composition, with guanine being the major component and its derivative, hypoxanthine, a minor component, regardless of the tissue's pigmentary color. Electron diffraction of the crystals purified separately from the orange and purple tissues exhibits nearly identical lattice parameters that closely match those measured for guanine crystals, which are widely distributed in other biophotonic systems ranging from marine invertebrates to terrestrial vertebrates. Heterogeneity of the thickness and spacing of the crystals within their stacks accounts for their broadband silvery reflectance. The optical appearance of the epidermis of this nudibranch thus results from the interaction of incident light with mobile stacks of purine crystals, augmenting the effects of its pigmentary colors.


Assuntos
Gastrópodes/classificação , Gastrópodes/ultraestrutura , Purinas/química , Animais , Cristalização , Epiderme/química , Análise Espectral , Raios Ultravioleta
2.
J R Soc Interface ; 13(120)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27383420

RESUMO

A surprising recent discovery revealed that the brightly reflective cells ('iridocytes') in the epithelia of giant clams actually send the majority of incident photons 'forward' into the tissue. While the intracellular Bragg reflectors in these cells are responsible for their colourful back reflection, Mie scattering produces the forward scattering, thus illuminating a dense population of endosymbiotic, photosynthetic microalgae. We now present a detailed micro-spectrophotometric characterization of the Bragg stacks in the iridocytes in live tissue to obtain the refractive index of the high-index layers (1.39 to 1.58, average 1.44 ± 0.04), the thicknesses of the high- and low-index layers (50-150 nm), and the numbers of pairs of layers (2-11) that participate in the observed spectral reflection. Based on these measurements, we performed electromagnetic simulations to better understand the optical behaviour of the iridocytes. The results open a deeper understanding of the optical behaviour of these cells, with the counterintuitive discovery that specific combinations of iridocyte diameter and Bragg-lamellar spacing can produce back reflection of the same colour that is also scattered forward, in preference to other wavelengths that are scattered at higher angles. We find for all values of size and wavelength investigated that more than 90% of the incident energy is carried by the photons that are scattered in the forward direction; while this forward scattering from each iridocyte shows very narrow angular dispersion (ca ±6°), the multiplicative scattering from a layer of ca 20 iridocytes broadens this dispersion to a cone of approximately ±90°. This understanding of the complex biophotonic dynamics enhances our comprehension of the physiologically, ecologically and evolutionarily significant light environment inside the giant clam, which is diffuse and nearly white at small tissue depths and downwelling, relatively monochromatic, and can be the same colour as the back-reflected light at greater depths in the tissue. Originally thought to be unique, cells of similar structure and photonic activity are now recognized in other species, where they serve other functions. The behaviour of the iridocytes opens possible new considerations for conservation and management of the valuable giant clam resource and new avenues for biologically inspired photonic applications.


Assuntos
Estruturas Animais , Bivalves , Luz , Estruturas Animais/citologia , Estruturas Animais/fisiologia , Animais , Bivalves/anatomia & histologia , Bivalves/fisiologia , Células Epiteliais/metabolismo
3.
J R Soc Interface ; 11(95): 20140106, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24694894

RESUMO

Loliginid squid dynamically tune the structural iridescence of cells in their skin for active camouflage and communication. Bragg reflectors in these cells consist of membrane-bound lamellae periodically alternating with low refractive index extracellular spaces; neuronal signalling induces condensation of the reflectin proteins that fill the lamellae, consequently triggering the expulsion of water. This causes an increase in refractive index within the lamellae, activating reflectance, with the change in lamellar thickness and spacing progressively shifting the wavelength of reflected light. We used micro-spectrophotometry to measure the functionally relevant refractive index of the high-index lamellae of the Bragg reflectors containing the condensed reflectins in chemically fixed dermal iridocytes of the squid, Doryteuthis opalescens. Our high-magnification imaging spectrometer allowed us to obtain normalized spectra of optically distinct sections of the individual, subcellular, multi-layer Bragg stacks. Replacement of the extracellular fluid with liquids of increasing refractive index allowed us to measure the reflectivity of the Bragg stacks as it decreased progressively to 0 when the refractive index of the extracellular medium exactly matched that of the reflectin-filled lamellae, thus allowing us to directly measure the refractive index of the reflectin-filled lamellae as ncondensed lamellae ≈ 1.44. The measured value of the physiologically relevant ncondensed lamellae from these bright iridocytes falls within the range of values that we recently determined by an independent optical method and is significantly lower than values previously reported for dehydrated and air-dried reflectin films. We propose that this directly measured value for the refractive index of the squid's Bragg lamellae containing the condensed reflectins is most appropriate for calculations of reflectivity in similar reflectin-based high-index layers in other molluscs.


Assuntos
Decapodiformes/química , Decapodiformes/citologia , Refratometria , Pele/química , Pele/citologia , Animais , Pigmentação da Pele/fisiologia
4.
J Exp Biol ; 216(Pt 19): 3733-41, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24006348

RESUMO

Loliginid squid use tunable multilayer reflectors to modulate the optical properties of their skin for camouflage and communication. Contained inside specialized cells called iridocytes, these photonic structures have been a model for investigations into bio-inspired adaptive optics. Here, we describe two distinct sexually dimorphic tunable biophotonic features in the commercially important species Doryteuthis opalescens: bright stripes of rainbow iridescence on the mantle just beneath each fin attachment and a bright white stripe centered on the dorsal surface of the mantle between the fins. Both of these cellular features are unique to the female; positioned in the same location as the conspicuously bright white testis in the male, they are completely switchable, transitioning between transparency and high reflectivity. The sexual dimorphism, location and tunability of these features suggest that they may function in mating or reproduction. These features provide advantageous new models for investigation of adaptive biophotonics. The intensely reflective cells of the iridescent stripes provide a greater signal-to-noise ratio than the adaptive iridocytes studied thus far, while the cells constituting the white stripe are adaptive leucophores--unique biological tunable broadband scatterers containing Mie-scattering organelles activated by acetylcholine, and a unique complement of reflectin proteins.


Assuntos
Decapodiformes/citologia , Decapodiformes/ultraestrutura , Animais , Cor , Decapodiformes/fisiologia , Feminino , Masculino , Diferenciação Sexual , Pele/citologia
5.
J R Soc Interface ; 10(85): 20130386, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23740489

RESUMO

Cephalopods (e.g. octopus, squid and cuttlefish) dynamically tune the colour and brightness of their skin for camouflage and communication using specialized skin cells called iridocytes. We use high-resolution microspectrophotometry to investigate individual tunable Bragg structures (consisting of alternating reflectin protein-containing, high-refractive index lamellae and low-refractive index inter-lamellar spaces) in live and chemically fixed iridocytes of the California market squid, Doryteuthis opalescens. This subcellular, single-stack microspectrophotometry allows for spectral normalization, permitting use of a transfer-matrix model of Bragg reflectance to calculate all the parameters of the Bragg stack-the refractive indices, dimensions and numbers of the lamellae and inter-lamellar spaces. Results of the fitting analyses show that eight or nine pairs of low- and high-index layers typically contribute to the observed reflectivity in live cells, whereas six or seven pairs of low- and high-index layers typically contribute to the reflectivity in chemically fixed cells. The reflectin-containing, high-index lamellae of live cells have a refractive index proportional to the peak reflectivity, with an average of 1.405 ± 0.012 and a maximum around 1.44, while the reflectin-containing lamellae in fixed tissue have a refractive index of 1.413 ± 0.015 suggesting a slight increase of refractive index in the process of fixation. As expected, incremental changes in refractive index contribute to the greatest incremental changes in reflectivity for those Bragg stacks with the most layers. The excursions in dimensions required to tune the measured reflected wavelength from 675 (red) to 425 nm (blue) are a decrease from ca 150 to 80 nm for the high-index lamellae and from ca 120 to 50 nm for the low-index inter-lamellar spaces. Fixation-induced dimensional changes also are quantified, leading us to suggest that further microspectrophotometric analyses of this iridocyte system can be used as a model system to quantify the effects of various methods of tissue fixation. The microspectrophotometry technique described can be expected to provide deeper insights into the molecular and physical mechanisms governing other biophotonically active cells and structures.


Assuntos
Decapodiformes/citologia , Decapodiformes/fisiologia , Refratometria , Pigmentação da Pele/fisiologia , Pele/citologia , Pele/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA