Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 288(11): 3478-3506, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33155404

RESUMO

Candida albicans is a pathogenic fungus that causes systemic infections and mortality in immunosuppressed individuals. We previously showed that deacetylation of histone H3 lysine 56 by Hst3 is essential for C. albicans viability. Hst3 is a fungal-specific NAD+ -dependent protein deacetylase of the sirtuin family. In vivo, supraphysiological concentrations of nicotinamide (NAM) are required for Hst3 inhibition and cytotoxicity. This underscores the importance of identifying mechanisms by which C. albicans can modulate intracellular NAM concentrations. For the first time in a pathogenic fungus, we combine genetics, heavy isotope labeling, and targeted quantitative metabolomics to identify genes, pathways, and mechanisms by which C. albicans can reduce the cytotoxicity of high NAM concentrations. We discovered three distinct fates for supraphysiological NAM concentrations. First, upon transient exposure to NAM, high intracellular NAM concentrations rapidly return near the physiological levels observed in cells that are not exposed to NAM. Second, during the first step of a fungal-specific NAM salvage pathway, NAM is converted into nicotinic acid, a metabolite that cannot inhibit the sirtuin Hst3. Third, we provide evidence that NAM enters the NAD+ metabolome through a NAM exchange reaction that contributes to NAM-mediated inhibition of sirtuins. However, in contrast to the other fates of NAM, the NAM exchange reaction cannot cause a net decrease in the intracellular concentration of NAM. Therefore, this reaction cannot enhance resistance to NAM. In summary, we demonstrate that C. albicans possesses at least two mechanisms to attenuate the cytotoxicity of pharmacological NAM concentrations. It seems likely that those two mechanisms of resistance to cytotoxic NAM concentrations are conserved in many other pathogenic fungi.


Assuntos
Candida albicans/genética , Candidíase/genética , Proteínas Fúngicas/genética , Niacinamida/toxicidade , Candida albicans/patogenicidade , Candidíase/microbiologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Histona Desacetilases/genética , Histonas/genética , Humanos , Lisina/genética , NAD/metabolismo , Niacinamida/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sirtuínas/genética
2.
J Cell Sci ; 128(19): 3521-4, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26430202

RESUMO

Graduate students and postdoctoral fellows at the Institute for Research in Immunology and Cancer (IRIC) organized the 9th IRIC International Symposium on 14-15 May, 2015. The symposium was held at the IRIC, an ultra-modern research hub and training center located on the hilltop of the Université de Montréal campus in Montreal, Canada. This year's title was 'Molecular Targets in Cancer Genomics', reflecting the common interest of the IRIC student community. Through four broadly themed sessions, organizers sought to highlight the new generation of anti-cancer strategies including targeted therapies directed against actionable cancer-specific mutations, and immunotherapies, which enhance immune responses against cancer. Both targeted and immunotherapies are tailored to cancer-specific features, and require precise knowledge of cancer cells, from their genome to their proteome. The focus of this symposium was on translating the molecular basis of cancer into a functional understanding of aberrant pathways, and to uncover novel targets to be exploited for cancer therapeutic strategies.


Assuntos
Genômica/métodos , Neoplasias/genética , Congressos como Assunto , Epigênese Genética/genética , Instabilidade Genômica/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...