Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Genome Biol ; 25(1): 10, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178179

RESUMO

The history of yeast Saccharomyces cerevisiae, aka brewer's or baker's yeast, is intertwined with our own. Initially domesticated 8,000 years ago to provide sustenance to our ancestors, for the past 150 years, yeast has served as a model research subject and a platform for technology. In this review, we highlight many ways in which yeast has served to catalyze the fields of functional genomics, genome editing, gene-environment interaction investigation, proteomics, and bioinformatics-emphasizing how yeast has served as a catalyst for innovation. Several possible futures for this model organism in synthetic biology, drug personalization, and multi-omics research are also presented.


Assuntos
Cerveja , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética
2.
Mol Cell Biol ; 43(11): 566-595, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811746

RESUMO

In Saccharomyces cerevisiae, newly synthesized histones H3 are acetylated on lysine 56 (H3 K56ac) by the Rtt109 acetyltransferase prior to their deposition on nascent DNA behind replication forks. Two deacetylases of the sirtuin family, Hst3 and Hst4, remove H3 K56ac from chromatin after S phase. hst3Δ hst4Δ cells present constitutive H3 K56ac, which sensitizes cells to replicative stress via unclear mechanisms. A chemogenomic screen revealed that DBF4 heterozygosity sensitizes cells to NAM-induced inhibition of sirtuins. DBF4 and CDC7 encode subunits of the Dbf4-dependent kinase (DDK), which activates origins of DNA replication during S phase. We show that (i) cells harboring the dbf4-1 or cdc7-4 hypomorphic alleles are sensitized to NAM, and that (ii) the sirtuins Sir2, Hst1, Hst3, and Hst4 promote DNA replication in cdc7-4 cells. We further demonstrate that Rif1, an inhibitor of DDK-dependent activation of origins, causes DNA damage and replication defects in NAM-treated cells and hst3Δ hst4Δ mutants. cdc7-4 hst3Δ hst4Δ cells are shown to display delayed initiation of DNA replication, which is not due to intra-S checkpoint activation but requires Rtt109-dependent H3 K56ac. Our results suggest that constitutive H3 K56ac sensitizes cells to replicative stress in part by negatively influencing the activation of origins of DNA replication.


Assuntos
Proteínas de Saccharomyces cerevisiae , Sirtuínas , Histonas/metabolismo , Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Origem de Replicação , Acetilação , Mutação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Replicação do DNA , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Histona Desacetilases/metabolismo
3.
BMC Genomics ; 23(1): 197, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277135

RESUMO

BACKGROUND: Chemogenomic profiling is a powerful approach for understanding the genome-wide cellular response to small molecules. First developed in Saccharomyces cerevisiae, chemogenomic screens provide direct, unbiased identification of drug target candidates as well as genes required for drug resistance. While many laboratories have performed chemogenomic fitness assays, few have been assessed for reproducibility and accuracy. Here we analyze the two largest independent yeast chemogenomic datasets comprising over 35 million gene-drug interactions and more than 6000 unique chemogenomic profiles; the first from our own academic laboratory (HIPLAB) and the second from the Novartis Institute of Biomedical Research (NIBR). RESULTS: Despite substantial differences in experimental and analytical pipelines, the combined datasets revealed robust chemogenomic response signatures, characterized by gene signatures, enrichment for biological processes and mechanisms of drug action. We previously reported that the cellular response to small molecules is limited and can be described by a network of 45 chemogenomic signatures. In the present study, we show that the majority of these signatures (66%) are also found in the companion dataset, providing further support for their biological relevance as conserved systems-level, small molecule response systems. CONCLUSIONS: Our results demonstrate the robustness of chemogenomic fitness profiling in yeast, while offering guidelines for performing other high-dimensional comparisons including parallel CRISPR screens in mammalian cells.


Assuntos
Saccharomyces cerevisiae , Animais , Resistência a Medicamentos , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética
5.
Sci Rep ; 11(1): 21296, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716334

RESUMO

Rotating forms of suspension culture allow cells to aggregate into spheroids, prevent the de-differentiating influence of 2D culture, and, perhaps most importantly of all, provide physiologically relevant, in vivo levels of shear stress. Rotating suspension culture technology has not been widely implemented, in large part because the vessels are prohibitively expensive, labor-intensive to use, and are difficult to scale for industrial applications. Our solution addresses each of these challenges in a new vessel called a cell spinpod. These small 3.5 mL capacity vessels are constructed from injection-molded thermoplastic polymer components. They contain self-sealing axial silicone rubber ports, and fluoropolymer, breathable membranes. Here we report the two-fluid modeling of the flow and stresses in cell spinpods. Cell spinpods were used to demonstrate the effect of fluid shear stress on renal cell gene expression and cellular functions, particularly membrane and xenobiotic transporters, mitochondrial function, and myeloma light chain, cisplatin and doxorubicin, toxicity. During exposure to myeloma immunoglobulin light chains, rotation increased release of clinically validated nephrotoxicity cytokine markers in a toxin-specific pattern. Addition of cisplatin or doxorubicin nephrotoxins reversed the enhanced glucose and albumin uptake induced by fluid shear stress in rotating cell spinpod cultures. Cell spinpods are a simple, inexpensive, easily automated culture device that enhances cellular functions for in vitro studies of nephrotoxicity.


Assuntos
Técnicas de Cultura de Células/métodos , Células Epiteliais/citologia , Túbulos Renais Proximais/citologia , Linhagem Celular , Humanos , Estresse Mecânico
6.
Methods Mol Biol ; 2381: 243-263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34590281

RESUMO

The combination of model organisms and comprehensive genome-wide screens has provided a wealth of data into the structure and regulation of the genome, gene-environment interactions, and more recently, into the mechanism of action of human therapeutics. The success of these studies relies, in part, on the ability to quantify the combined effects of multifactorial biological interactions. In this review, we explore the history and rationale behind genetic and chemical-genetic interactions with an emphasis on the phenomena of drug synergy and then briefly describe the theoretical models that we can leverage to investigate the synergy between compounds. In addition to reviewing the literature, we also provide a reference list including many of the most important studies in this field. The concept of chemical genetics interactions derives from classical studies of synthetic lethality and functional genomics. These techniques have recently graduated from the research lab to the clinic, and a better understanding of the basic principles can help accelerate this translation.


Assuntos
Genômica , Interação Gene-Ambiente , Genoma , Humanos , Preparações Farmacêuticas , Mutações Sintéticas Letais
7.
Sci Rep ; 11(1): 12487, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127714

RESUMO

Using a validated yeast chemogenomic platform, we characterized the genome-wide effects of several pharmaceutical contaminants, including three N-nitrosamines (NDMA, NDEA and NMBA), two related compounds (DMF and 4NQO) and several of their metabolites. A collection of 4800 non-essential homozygous diploid yeast deletion strains were screened in parallel and the strain abundance was quantified by barcode sequencing. These data were used to rank deletion strains representing genes required for resistance to the compounds to delineate affected cellular pathways and to visualize the global cellular effects of these toxins in an easy-to-use searchable database. Our analysis of the N-nitrosamine screens uncovered genes (via their corresponding homozygous deletion mutants) involved in several evolutionarily conserved pathways, including: arginine biosynthesis, mitochondrial genome integrity, vacuolar protein sorting and DNA damage repair. To investigate why NDMA, NDEA and DMF caused fitness defects in strains lacking genes of the arginine pathway, we tested several N-nitrosamine metabolites (methylamine, ethylamine and formamide), and found they also affected arginine pathway mutants. Notably, each of these metabolites has the potential to produce ammonium ions during their biotransformation. We directly tested the role of ammonium ions in N-nitrosamine toxicity by treatment with ammonium sulfate and we found that ammonium sulfate also caused a growth defect in arginine pathway deletion strains. Formaldehyde, a metabolite produced from NDMA, methylamine and formamide, and which is known to cross-link free amines, perturbed deletion strains involved in chromatin remodeling and DNA repair pathways. Finally, co-administration of N-nitrosamines with ascorbic or ferulic acid did not relieve N-nitrosamine toxicity. In conclusion, we used parallel deletion mutant analysis to characterize the genes and pathways affected by exposure to N-nitrosamines and related compounds, and provide the data in an accessible, queryable database.


Assuntos
Contaminação de Medicamentos , Nitrosaminas/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Testes de Toxicidade Aguda , Arginina/biossíntese , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , DNA Fúngico/efeitos dos fármacos , DNA Fúngico/isolamento & purificação , Aptidão Genética/efeitos dos fármacos , Genoma Fúngico/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Deleção de Sequência
8.
Front Fungal Biol ; 2: 683414, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744101

RESUMO

Since the earliest days of using natural remedies, combining therapies for disease treatment has been standard practice. Combination treatments exhibit synergistic effects, broadly defined as a greater-than-additive effect of two or more therapeutic agents. Clinicians often use their experience and expertise to tailor such combinations to maximize the therapeutic effect. Although understanding and predicting biophysical underpinnings of synergy have benefitted from high-throughput screening and computational studies, one challenge is how to best design and analyze the results of synergy studies, especially because the number of possible combinations to test quickly becomes unmanageable. Nevertheless, the benefits of such studies are clear-by combining multiple drugs in the treatment of infectious disease and cancer, for instance, one can lessen host toxicity and simultaneously reduce the likelihood of resistance to treatment. This study introduces a new approach to characterize drug synergy, in which we extend the widely validated chemogenomic HIP-HOP assay to drug combinations; this assay involves parallel screening of comprehensive collections of barcoded deletion mutants. We identify a class of "combination-specific sensitive strains" that introduces mechanisms for the synergies we observe and further suggest focused follow-up studies.

10.
Microb Cell ; 7(6): 146-159, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32548177

RESUMO

Eight drimane sesquiterpenoids including (-)-drimenol and (+)-albicanol were synthesized from (+)-sclareolide and evaluated for their antifungal activities. Three compounds, (-)-drimenol, (+)-albicanol, and (1R,2R,4aS,8aS)-2-hydroxy-2,5,5,8a-tetramethyl-decahydronaphthalene-1-carbaldehyde (4) showed strong activity against C. albicans. (-)-Drimenol, the strongest inhibitor of the three, (at concentrations of 8 - 64 µg/ml, causing 100% death of various fungi), acts not only against C. albicans in a fungicidal manner, but also inhibits other fungi such as Aspergillus, Cryptococcus, Pneumocystis, Blastomyces, Saksenaea and fluconazole resistant strains of C. albicans, C. glabrata, C. krusei, C. parapsilosis and C. auris. These observations suggest that drimenol is a broad-spectrum antifungal agent. At a high concentration (100 µg/ml) drimenol caused rupture of the fungal cell wall/membrane. In a nematode model of C. albicans infection, drimenol rescued the worms from C. albicans-mediated death, indicating drimenol is tolerable and bioactive in metazoans. Genome-wide fitness profiling assays of both S. cerevisiae (nonessential homozygous and essential heterozygous) and C. albicans (Tn-insertion mutants) collections revealed putative genes and pathways affected by drimenol. Using a C. albicans mutant spot assay, the Crk1 kinase associated gene products, Ret2, Cdc37, and orf19.759, orf19.1672, and orf19.4382 were revealed to be involved in drimenol's mechanism of action. The three orfs identified in this study are novel and appear to be linked with Crk1 function. Further, computational modeling results suggest possible modifications of the structure of drimenol, including the A ring, for improving the antifungal activity.

11.
G3 (Bethesda) ; 10(3): 933-943, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31974098

RESUMO

Bottlenecks often occur during data analysis when studying microbial growth in liquid culture at large scale. A researcher can collect thousands of growth curves, repeated measures of a microbial liquid culture, at once in multiple micro titer plates by purpose-built robotic instruments. However, it can be difficult and time-consuming to inspect and analyze these data. This is especially true for researchers without programming experience. To enable this researcher, we created and describe an interactive application: Automated Usher for Data Inspection and Tidying (AUDIT). It allows the user to analyze growth curve data generated from one or more runs each with one or more micro titer plates alongside their experimental design. AUDIT covers input, pre-processing, summarizing, visual exploration and output. Compared to previously available tools AUDIT handles more data, provides live previews and is built from individually re-usable pieces distributed as R packages.


Assuntos
Análise de Dados , Saccharomyces cerevisiae/crescimento & desenvolvimento , Software , Deleção de Genes , Saccharomyces cerevisiae/genética
12.
Microb Cell ; 6(8): 356-369, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31403050

RESUMO

Sulfur assimilation and the biosynthesis of methionine, cysteine and S-adenosylmethionine (SAM) are critical to life. As a cofactor, SAM is required for the activity of most methyltransferases (MTases) and as such has broad impact on diverse cellular processes. Assigning function to MTases remains a challenge however, as many MTases are partially redundant, they often have multiple cellular roles and these activities can be condition-dependent. To address these challenges, we performed a systematic synthetic genetic analysis of all pairwise MTase double mutations in normal and stress conditions (16°C, 37°C, and LiCl) resulting in an unbiased comprehensive overview of the complexity and plasticity of the methyltransferome. Based on this network, we performed biochemical analysis of members of the histone H3K4 COMPASS complex and the phospholipid methyltransferase OPI3 to reveal a new role for a phospholipid methyltransferase in mediating histone methylation (H3K4) which underscores a potential link between lipid homeostasis and histone methylation. Our findings provide a valuable resource to study methyltransferase function, the dynamics of the methyltransferome, genetic crosstalk between biological processes and the dynamics of the methyltransferome in response to cellular stress.

13.
Nat Chem Biol ; 15(5): 549, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30833779

RESUMO

In the version of this article originally published, several co-authors had incorrect affiliation footnote numbers listed in the author list. Tatiana Cañeque and Angelica Mariani should each have affiliation numbers 3, 4 and 5, and Emmanuelle Charafe-Jauffret should have number 6. Additionally, there was an extra space in the name of co-author Robert P. St.Onge. These errors have been corrected in the HTML and PDF versions of the paper and the Supplementary Information PDF.

14.
Nat Chem Biol ; 15(4): 358-366, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742123

RESUMO

Peripheral membrane proteins orchestrate many physiological and pathological processes, making regulation of their activities by small molecules highly desirable. However, they are often refractory to classical competitive inhibition. Here, we demonstrate that potent and selective inhibition of peripheral membrane proteins can be achieved by small molecules that target protein-membrane interactions by a noncompetitive mechanism. We show that the small molecule Bragsin inhibits BRAG2-mediated Arf GTPase activation in vitro in a manner that requires a membrane. In cells, Bragsin affects the trans-Golgi network in a BRAG2- and Arf-dependent manner. The crystal structure of the BRAG2-Bragsin complex and structure-activity relationship analysis reveal that Bragsin binds at the interface between the PH domain of BRAG2 and the lipid bilayer to render BRAG2 unable to activate lipidated Arf. Finally, Bragsin affects tumorsphere formation in breast cancer cell lines. Bragsin thus pioneers a novel class of drugs that function by altering protein-membrane interactions without disruption.


Assuntos
Fator 1 de Ribosilação do ADP/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Fator 1 de Ribosilação do ADP/metabolismo , Linhagem Celular Tumoral , GTP Fosfo-Hidrolases , Proteínas Ativadoras de GTPase , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Células HeLa , Humanos , Bicamadas Lipídicas , Glicoproteínas de Membrana/metabolismo , Nucleotídeos , Domínios de Homologia à Plecstrina/fisiologia , Ligação Proteica , Transdução de Sinais , Relação Estrutura-Atividade , Sulfotransferases/metabolismo
16.
Microgravity Sci Technol ; 30(3): 195-208, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31258252

RESUMO

Baker's yeast (Saccharomyces cerevisiae) has broad genetic homology to human cells. Although typically grown as 1-2mm diameter colonies under certain conditions yeast can form very large (10 + mm in diameter) or 'giant' colonies on agar. Giant yeast colonies have been used to study diverse biomedical processes such as cell survival, aging, and the response to cancer pharmacogenomics. Such colonies evolve dynamically into complex stratified structures that respond differentially to environmental cues. Ammonia production, gravity driven ammonia convection, and shear defense responses are key differentiation signals for cell death and reactive oxygen system pathways in these colonies. The response to these signals can be modulated by experimental interventions such as agar composition, gene deletion and application of pharmaceuticals. In this study we used physical factors including colony rotation and microgravity to modify ammonia convection and shear stress as environmental cues and observed differences in the responses of both ammonia dependent and stress response dependent pathways We found that the effects of random positioning are distinct from rotation. Furthermore, both true and simulated microgravity exacerbated both cellular redox responses and apoptosis. These changes were largely shear-response dependent but each model had a unique response signature as measured by shear stress genes and the promoter set which regulates them These physical techniques permitted a graded manipulation of both convection and ammonia signaling and are primed to substantially contribute to our understanding of the mechanisms of drug action, cell aging, and colony differentiation.

17.
Open Biol ; 7(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28592509

RESUMO

The Yeast Knockout (YKO) collection has provided a wealth of functional annotations from genome-wide screens. An unintended consequence is that 76% of gene annotations derive from one genotype. The nutritional auxotrophies in the YKO, in particular, have phenotypic consequences. To address this issue, 'prototrophic' versions of the YKO collection have been constructed, either by introducing a plasmid carrying wild-type copies of the auxotrophic markers (Plasmid-Borne, PBprot) or by backcrossing (Backcrossed, BCprot) to a wild-type strain. To systematically assess the impact of the auxotrophies, genome-wide fitness profiles of prototrophic and auxotrophic collections were compared across diverse drug and environmental conditions in 250 experiments. Our quantitative profiles uncovered broad impacts of genotype on phenotype for three deletion collections, and revealed genotypic and strain-construction-specific phenotypes. The PBprot collection exhibited fitness defects associated with plasmid maintenance, while BCprot fitness profiles were compromised due to strain loss from nutrient selection steps during strain construction. The repaired prototrophic versions of the YKO collection did not restore wild-type behaviour nor did they clarify gaps in gene annotation resulting from the auxotrophic background. To remove marker bias and expand the experimental scope of deletion libraries, construction of a bona fide prototrophic collection from a wild-type strain will be required.


Assuntos
Saccharomyces cerevisiae/genética , Estresse Fisiológico , Técnicas de Inativação de Genes , Estudo de Associação Genômica Ampla , Genótipo
18.
G3 (Bethesda) ; 7(4): 1251-1257, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28235825

RESUMO

Drug resistance is a consequence of how most modern medicines work. Drugs exert pressure on cells that causes death or the evolution of resistance. Indeed, highly specific drugs are rendered ineffective by a single DNA mutation. In this study, we apply the drug methotrexate, which is widely used in cancer and rheumatoid arthritis, and perform evolution experiments on Baker's yeast to ask the different ways in which cells become drug resistant. Because of the conserved nature of biological pathways between yeast and man, our results can inform how the same mechanism may operate to render human cells resistant to treatment. Exposure of cells to small molecules and drug therapies imposes a strong selective pressure. As a result, cells rapidly acquire mutations in order to survive. These include resistant variants of the drug target as well as those that modulate drug transport and detoxification. To systematically explore how cells acquire drug resistance in an unbiased manner, rapid cost-effective approaches are required. Methotrexate, as one of the first rationally designed anticancer drugs, has served as a prototypic example of such acquired resistance. Known methotrexate resistance mechanisms include mutations that increase expression of the dihydrofolate reductase (DHFR) target as well as those that maintain function yet reduce the drug's binding affinity. Recent evidence suggests that target-independent, epistatic mutations can also result in resistance to methotrexate. Currently, however, the relative contribution of such unlinked resistance mutations is not well understood. To address this issue, we took advantage of Saccharomyces cerevisiae as a model eukaryotic system that combined with whole-genome sequencing and a rapid screening methodology, allowed the identification of causative mutations that modulate resistance to methotrexate. We found a recurrent missense mutation in SEC21 (orthologous to human COPG1), which we confirmed in 10 de novo methotrexate-resistant strains. This sec21 allele (S96L) behaves as a recessive, gain-of-function allele, conferring methotrexate resistance that is abrogated by the presence of a wild-type copy of SEC21 These observations indicate that the Sec21p/COPI transport complex has previously uncharacterized roles in modulating methotrexate stress.


Assuntos
Farmacorresistência Fúngica/genética , Genoma Fúngico , Metotrexato/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Farmacorresistência Fúngica/efeitos dos fármacos , Teste de Complementação Genética , Variação Genética , Mutação , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo
19.
ACS Cent Sci ; 2(10): 687-701, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27800551

RESUMO

The development of new antimalarial compounds remains a pivotal part of the strategy for malaria elimination. Recent large-scale phenotypic screens have provided a wealth of potential starting points for hit-to-lead campaigns. One such public set is explored, employing an open source research mechanism in which all data and ideas were shared in real time, anyone was able to participate, and patents were not sought. One chemical subseries was found to exhibit oral activity but contained a labile ester that could not be replaced without loss of activity, and the original hit exhibited remarkable sensitivity to minor structural change. A second subseries displayed high potency, including activity within gametocyte and liver stage assays, but at the cost of low solubility. As an open source research project, unexplored avenues are clearly identified and may be explored further by the community; new findings may be cumulatively added to the present work.

20.
PLoS Negl Trop Dis ; 10(10): e0005058, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27755544

RESUMO

BACKGROUND: The lack of new anthelmintic agents is of growing concern because it affects human health and our food supply, as both livestock and plants are affected. Two principal factors contribute to this problem. First, nematode resistance to anthelmintic drugs is increasing worldwide and second, many effective nematicides pose environmental hazards. In this paper we address this problem by deploying a high throughput screening platform for anthelmintic drug discovery using the nematode Caenorhabditis elegans as a surrogate for infectious nematodes. This method offers the possibility of identifying new anthelmintics in a cost-effective and timely manner. METHODS/PRINCIPAL FINDINGS: Using our high throughput screening platform we have identified 14 new potential anthelmintics by screening more than 26,000 compounds from the Chembridge and Maybridge chemical libraries. Using phylogenetic profiling we identified a subset of the 14 compounds as potential anthelmintics based on the relative sensitivity of C. elegans when compared to yeast and mammalian cells in culture. We showed that a subset of these compounds might employ mechanisms distinct from currently used anthelmintics by testing diverse drug resistant strains of C. elegans. One of these newly identified compounds targets mitochondrial complex II, and we used structural analysis of the target to suggest how differential binding of this compound may account for its different effects in nematodes versus mammalian cells. CONCLUSIONS/SIGNIFICANCE: The challenge of anthelmintic drug discovery is exacerbated by several factors; including, 1) the biochemical similarity between host and parasite genomes, 2) the geographic location of parasitic nematodes and 3) the rapid development of resistance. Accordingly, an approach that can screen large compound collections rapidly is required. C. elegans as a surrogate parasite offers the ability to screen compounds rapidly and, equally importantly, with specificity, thus reducing the potential toxicity of these compounds to the host and the environment. We believe this approach will help to replenish the pipeline of potential nematicides.


Assuntos
Antinematódeos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Infecções por Nematoides/parasitologia , Animais , Caenorhabditis elegans/fisiologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Nematoides/efeitos dos fármacos , Nematoides/genética , Nematoides/fisiologia , Infecções por Nematoides/tratamento farmacológico , Genética Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...