Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 36, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245742

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) increases the risk of coronary heart disease (CHD) by 2-4 fold, and is associated with endothelial dysfunction, dyslipidaemia, insulin resistance, and chronic hyperglycaemia. The aim of this investigation was to assess, by a multimarker mass spectrometry approach, the predictive role of circulating proteins as biomarkers of cardiovascular damage progression associated with diabetes mellitus. METHODS: The study considered 34 patients with both T2DM and CHD, 31 patients with T2DM and without CHD, and 30 patients without diabetes with a diagnosis of CHD. Plasma samples of subjects were analysed through a multiplexed targeted liquid chromatography mass spectrometry (LC-MS)-based assay, namely Multiple Reaction Monitoring (MRM), allowing the simultaneous detection of peptides derived from a protein of interest. Gene Ontology (GO) Analysis was employed to identify enriched GO terms in the biological process, molecular function, or cellular component categories. Non-parametric multivariate methods were used to classify samples from patients and evaluate the relevance of the analysed proteins' panel. RESULTS: A total of 81 proteins were successfully quantified in the human plasma samples. Gene Ontology analysis assessed terms related to blood microparticles, extracellular exosomes and collagen-containing extracellular matrix. Preliminary evaluation using analysis of variance (ANOVA) of the differences in the proteomic profile among patient groups identified 13 out of the 81 proteins as significantly different. Multivariate analysis, including cluster analysis and principal component analysis, identified relevant grouping of the 13 proteins. The first main cluster comprises apolipoprotein C-III, apolipoprotein C-II, apolipoprotein A-IV, retinol-binding protein 4, lysozyme C and cystatin-C; the second one includes, albeit with sub-grouping, alpha 2 macroglobulin, afamin, kininogen 1, vitronectin, vitamin K-dependent protein S, complement factor B and mannan-binding lectin serine protease 2. Receiver operating characteristic (ROC) curves obtained with the 13 selected proteins using a nominal logistic regression indicated a significant overall distinction (p < 0.001) among the three groups of subjects, with area under the ROC curve (AUC) ranging 0.91-0.97, and sensitivity and specificity ranging from 85 to 100%. CONCLUSIONS: Targeted mass spectrometry approach indicated 13 multiple circulating proteins as possible biomarkers of cardiovascular damage progression associated with T2DM, with excellent classification results in terms of sensitivity and specificity.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Proteômica/métodos , Biomarcadores , Peptídeos , Proteínas Sanguíneas
2.
Biomolecules ; 13(12)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38136584

RESUMO

Recent evidence indicates that reactive oxygen species play an important causative role in the onset and progression of valvular diseases. Here, we analyzed the oxidative modifications of albumin (HSA) occurring on Cysteine 34 and the antioxidant capacity of the serum in 44 patients with severe aortic stenosis (36 patients underwent aortic valve replacement and 8 underwent a second aortic valve substitution due to a degenerated bioprosthetic valve), and in 10 healthy donors (controls). Before surgical intervention, patients showed an increase in the oxidized form of albumin (HSA-Cys), a decrease in the native reduced form (HSA-SH), and a significant reduction in serum free sulfhydryl groups and in the total serum antioxidant activity. Patients undergoing a second valve replacement showed levels of HSA-Cys, free sulfhydryl groups, and total antioxidant activity similar to those of controls. In vitro incubation of whole blood with aspirin (ASA) significantly increased the free sulfhydryl groups, suggesting that the in vivo treatment with ASA may contribute to reducing oxidative stress. We also found that N-acetylcysteine and its amide derivative were able to regenerate HSA-SH. In conclusion, the systemic oxidative stress reflected by high levels of HSA-Cys is increased in patients with aortic valve stenosis. Thiol-disulfide breaking agents regenerate HSA-SH, thus paving the way to the use these compounds to mitigate the oxidative stress occurring in the disease.


Assuntos
Antioxidantes , Estenose da Valva Aórtica , Humanos , Albumina Sérica , Estresse Oxidativo , Acetilcisteína/farmacologia , Compostos de Sulfidrila
3.
Eur J Prev Cardiol ; 30(Suppl 2): ii2-ii8, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819226

RESUMO

In this review, we describe the structure and function of the alveolar-capillary membrane and the identification of a novel potential marker of its integrity in the context of heart failure (HF). The alveolar-capillary membrane is indeed a crucial structure for the maintenance of the lung parenchyma gas exchange capacity, and the occurrence of pathological conditions determining lung fluids accumulation, such as HF, might significantly impair lung diffusion capacity altering the alveolar-capillary membrane protective functions. In the years, we found that the presence of immature forms of the surfactant protein-type B (proSP-B) in the circulation reflects alterations in the alveolar-capillary membrane integrity. We discussed our main achievements showing that proSP-B, due to its chemical properties, specifically binds to high-density lipoprotein, impairing their antioxidant activity, and likely contributing to the progression of the disease. Further, we found that immature proSP-B, not the mature protein, is related to lung abnormalities, more precisely than the lung function parameters. Thus, to the list of the potential proposed markers of HF, we add proSP-B, which represents a precise marker of alveolar-capillary membrane dysfunction in HF, correlates with prognosis, and represents a precocious marker of drug therapy.


Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Troca Gasosa Pulmonar , Prognóstico , Pulmão , Antioxidantes/uso terapêutico
4.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446373

RESUMO

Moyamoya angiopathy (MMA) is an uncommon cerebrovascular disease characterized by a progressive steno-occlusive lesion of the internal carotid artery and the compensatory development of an unstable network of collateral vessels. These vascular hallmarks are responsible for recurrent ischemic/hemorrhagic strokes. Surgical treatment represents the preferred procedure for MMA patients, and indirect revascularization may induce a spontaneous angiogenesis between the brain surface and dura mater (DM), whose function remains rather unknown. A better understanding of MMA pathogenesis is expected from the molecular characterization of DM. We performed a comprehensive, label-free, quantitative mass spectrometry-based proteomic characterization of DM. The 30 most abundant identified proteins were located in the extracellular region or exosomes and were involved in extracellular matrix organization. Gene ontology analysis revealed that most proteins were involved in binding functions and hydrolase activity. Among the 30 most abundant proteins, Filamin A is particularly relevant because considering its well-known biochemical functions and molecular features, it could be a possible second hit gene with a potential role in MMA pathogenesis. The current explorative study could pave the way for further analyses aimed at better understanding such uncommon and disabling intracranial vasculopathy.


Assuntos
Transtornos Cerebrovasculares , Doença de Moyamoya , Humanos , Proteoma , Proteômica , Doença de Moyamoya/genética , Transtornos Cerebrovasculares/complicações , Dura-Máter
5.
Front Cardiovasc Med ; 10: 1191303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37378405

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9), one of the key regulators of the low-density lipoprotein receptor (LDLR), can play a direct role in atheroma development. Although advances in the understandings of genetic PCSK9 polymorphisms have enabled to reveal the role of PCSK9 in the complex pathophysiology of cardiovascular diseases (CVDs), increasing lines of evidence support non-cholesterol-related processes mediated by PCSK9. Owing to major improvements in mass spectrometry-based technologies, multimarker proteomic and lipidomic panels hold the promise to identify novel lipids and proteins potentially related to PCSK9. Within this context, this narrative review aims to provide an overview of the most significant proteomics and lipidomics studies related to PCSK9 effects beyond cholesterol lowering. These approaches have enabled to unveil non-common targets of PCSK9, potentially leading to the development of novel statistical models for CVD risk prediction. Finally, in the era of precision medicine, we have reported the impact of PCSK9 on extracellular vesicles (EVs) composition, an effect that could contribute to an increased prothrombotic status in CVD patients. The possibility to modulate EVs release and cargo could help counteract the development and progression of the atherosclerotic process.

6.
Biomedicines ; 11(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37189655

RESUMO

Sacubitril/Valsartan, used for the treatment of heart failure (HF), is a combination of two drugs, an angiotensin receptor inhibitor, and a neprilysin inhibitor, which activates vasoactive peptides. Even though its beneficial effects on cardiac functions have been demonstrated, the mechanisms underpinning these effects remain poorly understood. To achieve more mechanistic insights, we analyzed the profiles of circulating miRNAs in plasma from patients with stable HF with reduced ejection function (HFrEF) and treated with Sacubitril/Valsartan for six months. miRNAs are short (22-24 nt) non-coding RNAs, which are not only emerging as sensitive and stable biomarkers for various diseases but also participate in the regulation of several biological processes. We found that in patients with high levels of miRNAs, specifically miR-29b-3p, miR-221-3p, and miR-503-5p, Sacubitril/Valsartan significantly reduced their levels at follow-up. We also found a significant negative correlation of miR-29b-3p, miR-221-3p, and miR-503-5p with VO2 at peak exercise, whose levels decrease with HF severity. Furthermore, from a functional point of view, miR-29b-3p, miR-221-3p, and miR-503-5p all target Phosphoinositide-3-Kinase Regulatory Subunit 1, which encodes regulatory subunit 1 of phosphoinositide-3-kinase. Our findings support that an additional mechanism through which Sacubitril/Valsartan exerts its functions is the modulation of miRNAs with potentially relevant roles in HFrEF pathophysiology.

7.
Antioxidants (Basel) ; 12(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36978789

RESUMO

The process of adipogenesis involves the differentiation of preadipocytes into mature adipocytes. Excessive adipogenesis promotes obesity, a condition that increasingly threatens global health and contributes to the rapid rise of obesity-related diseases. We have recently shown that prenylcysteine oxidase 1 (PCYOX1) is a regulator of atherosclerosis-disease mechanisms, which acts through mechanisms not exclusively related to its pro-oxidant activity. To address the role of PCYOX1 in the adipogenic process, we extended our previous observations confirming that Pcyox1-/-/Apoe-/- mice fed a high-fat diet for 8 or 12 weeks showed significantly lower body weight, when compared to Pcyox1+/+/Apoe-/- mice, due to an evident reduction in visceral adipose content. We herein assessed the role of PCYOX1 in adipogenesis. Here, we found that PCYOX1 is expressed in adipose tissue, and, independently from its pro-oxidant enzymatic activity, is critical for adipogenesis. Pcyox1 gene silencing completely prevented the differentiation of 3T3-L1 preadipocytes, by acting as an upstream regulator of several key players, such as FABP4, PPARγ, C/EBPα. Proteomic analysis, performed by quantitative label-free mass spectrometry, further strengthened the role of PCYOX1 in adipogenesis by expanding the list of its downstream targets. Finally, the absence of Pcyox1 reduces the inflammatory markers in adipose tissue. These findings render PCYOX1 a novel adipogenic factor with possible pathophysiological or therapeutic potential.

8.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768933

RESUMO

Macrophages are heterogeneous and plastic cells, able to adapt their phenotype and functions to changes in the microenvironment. They are involved in several homeostatic processes and also in many human diseases, including atherosclerosis, where they participate in all the stages of the disease. For these reasons, macrophages have been studied extensively using different approaches, including proteomics. Proteomics, indeed, may be a powerful tool to better understand the behavior of these cells, and a careful analysis of the proteome of different macrophage phenotypes can help to better characterize the role of these phenotypes in atherosclerosis and provide a broad view of proteins that might potentially affect the course of the disease. In this review, we discuss the different proteomic techniques that have been used to delineate the proteomic profile of macrophage phenotypes and summarize some results that can help to elucidate the roles of macrophages and develop new strategies to counteract the progression of atherosclerosis and/or promote regression.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Proteômica , Aterosclerose/metabolismo , Macrófagos/metabolismo , Fenótipo , Proteoma/metabolismo , Placa Aterosclerótica/metabolismo , Ativação de Macrófagos
9.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834701

RESUMO

Lipid-lowering therapies are widely used to prevent the development of atherosclerotic cardiovascular disease (ASCVD) and related mortality worldwide. "Omics" technologies have been successfully applied in recent decades to investigate the mechanisms of action of these drugs, their pleiotropic effects, and their side effects, aiming to identify novel targets for future personalized medicine with an improvement of the efficacy and safety associated with the treatment. Pharmacometabolomics is a branch of metabolomics that is focused on the study of drug effects on metabolic pathways that are implicated in the variation of response to the treatment considering also the influences from a specific disease, environment, and concomitant pharmacological therapies. In this review, we summarized the most significant metabolomic studies on the effects of lipid-lowering therapies, including the most commonly used statins and fibrates to novel drugs or nutraceutical approaches. The integration of pharmacometabolomics data with the information obtained from the other "omics" approaches could help in the comprehension of the biological mechanisms underlying the use of lipid-lowering drugs in view of defining a precision medicine to improve the efficacy and reduce the side effects associated with the treatment.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipolipemiantes , Medicina de Precisão , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/tratamento farmacológico , Lipídeos
10.
Mass Spectrom Rev ; 42(4): 1113-1128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34747521

RESUMO

The Human Plasma Proteome has always been the most investigated compartment in proteomics-based biomarker discovery, and is considered the largest and deepest version of the human proteome, reflecting the state of the body in health and disease. Even if efforts have been always dedicated to the refinement of proteomic approaches to investigate more deeply the plasma proteome, it should not be forgotten that also highly abundant plasma proteins, like human serum albumin (HSA), often neglected in these studies, might provide fundamental physiological functions in plasma, and should be better considered. This review summarizes the important roles of HSA in the context of cardiovascular diseases (CVD), and in particular in heart failure. Notwithstanding much attention has been historically directed toward the association of HSA levels and CVD risk, the advances in the field of mass spectrometry research allow also a better characterization of the effects of oxidative modifications that could alter not only the structure but also the function of HSA.


Assuntos
Albuminas , Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Proteoma/metabolismo , Proteômica
11.
Mass Spectrom Rev ; 42(4): 1397-1423, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34747518

RESUMO

The complexity of cardiovascular diseases (CVDs), which remains the leading cause of death worldwide, makes the current clinical pathway for cardiovascular risk assessment unsatisfactory, as there remains a substantial unexplained residual risk. Simultaneous assessment of a large number of plasma proteins may be a promising tool to further refine risk assessment, and lipoprotein-associated proteins have the potential to fill this gap. Technical advances now allow for high-throughput proteomic analysis in a reproducible and cost-effective manner. Proteomics has great potential to identify and quantify hundreds of candidate marker proteins in a sample and allows the translation from isolated lipoproteins to whole plasma, thus providing an individual multiplexed proteomic fingerprint. This narrative review describes the pathophysiological roles of atherogenic apoB-containing lipoproteins and the recent advances in their mass spectrometry-based proteomic characterization and quantitation for better refinement of CVD risk assessment.


Assuntos
Apolipoproteínas B , Doenças Cardiovasculares , Humanos , Proteômica , Lipoproteínas , Espectrometria de Massas
12.
Mass Spectrom Rev ; : e21812, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36161723

RESUMO

Adipose tissue is classically considered the primary site of lipid storage, but in recent years has garnered appreciation for its broad role as an endocrine organ, capable of remotely signaling to other tissues to alter their metabolic program. The adipose tissue is now recognized as a crucial regulator of cardiovascular health, mediated by the secretion of several bioactive products, with a wide range of endocrine and paracrine effects on the cardiovascular system. Thanks to the development and improvement of high-throughput mass spectrometry, the size and components of the human secretome have been characterized. In this review, we summarized the recent advances in mass spectrometry-based studies of the cell and tissue secretome for the understanding of adipose tissue biology, which may help to decipher the complex molecular mechanisms controlling the crosstalk between the adipose tissue and the cardiovascular system, and their possible clinical translation.

13.
Antioxidants (Basel) ; 11(4)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35453387

RESUMO

Coronary artery bypass graft (CABG) surgery still represents the gold standard for patients with complex multivessel coronary artery disease. However, graft occlusion still occurs in a significant proportion of CABG conduits, and oxidative stress is currently considered to be a potential contributor. Human serum albumin (HSA) represents the main antioxidant in plasma through its reduced amino acid Cys34, which can efficiently scavenge several oxidants. In a nested case-control study including 36 patients with occluded grafts and 38 age- and sex-matched patients without occlusion, we assessed the levels of the native mercaptoalbumin (HSA-SH) and oxidized thiolated form of albumin (Thio-HSA) in relation with graft occlusion within 5 years after CABG. We found that the plasma level of preoperative HSA-SH was significantly lower in patients with occluded graft at 5 years follow-up than in patients with graft patency. Furthermore, low HSA-SH remained independently associated with graft occlusion even after adjusting for preoperative D-dimer, a well-known marker of activated coagulation recently found to be associated with graft occlusion. In conclusion, the preoperative level of HSA-SH is independently associated with graft occlusion in CABG and represents a measurable and potentially druggable predictor.

14.
Biomolecules ; 11(4)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918772

RESUMO

Cigarette smoking is a major independent risk factor for cardiovascular diseases (CVD). The underlying mechanisms, however, are not clearly understood. Lungs are the primary route of exposure to smoke, with pulmonary cells and surfactant being the first structures directly exposed, resulting in the leakage of the immature proteoform of surfactant protein B (proSP-B). Herein, we evaluated whether proSP-B joined the cargo of high-density lipoprotein (HDL) proteins in healthy young subjects (n = 106) without any CVD risk factor other than smoking, and if HDL-associated proSP-B (HDL-SPB) correlated with pulmonary function parameters, systemic inflammation, and oxidative stress. At univariable analysis, HDL-SPB resulted significantly higher in smokers (2.2-fold, p < 0.001) than in non-smokers. No significant differences have been detected between smokers and non-smokers for inflammation, oxidation variables, and alveolar-capillary diffusion markers. In a multivariable model, HDL-SPB was independently associated with smoking. In conclusion, HDL-SPB is not only a precocious and sensitive index of the acute effects of smoke, but it might be also a potential causal factor in the onset of the vascular damage induced by modified HDL. These findings contribute to the emerging concept that the quality of the HDL proteome, rather than the quantity of particles, plays a central role in CVD risk protection.


Assuntos
Pulmão/fisiologia , Proteína B Associada a Surfactante Pulmonar/sangue , Fumar Tabaco/efeitos adversos , Adulto , Fatores de Risco Cardiometabólico , Feminino , Humanos , Lipoproteínas HDL/sangue , Pulmão/metabolismo , Masculino , Estresse Oxidativo , Testes de Função Respiratória , Fumar Tabaco/sangue
15.
Redox Biol ; 42: 101899, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33642248

RESUMO

Reactive carbonyl species (RCS) formed by lipidperoxidation as free forms or as enzymatic and non-enzymatic conjugates are widely used as an index of oxidative stress. Besides general measurements based on derivatizing reactions, more selective and sensitive MS based analyses have been proposed in the last decade. Untargeted and targeted methods for the measurement of free RCS and adducts have been described and their applications to in vitro and ex vivo samples have permitted the identification of many biological targets, reaction mechanisms and adducted moieties with a particular relevance to RCS protein adducts. The growing interest in protein carbonylation can be explained by considering that protein adducts are now recognized as being involved in the damaging action of oxidative stress so that their measurement is performed not only to obtain an index of lipid peroxidation but also to gain a deeper insight into the molecular mechanisms of oxidative stress. The aim of the review is to discuss the most novel analytical approaches and their application for profiling reactive carbonyl species and their enzymatic and non-enzymatic metabolites as an index of lipid-oxidation and oxidative stress. Limits and perspectives will be discussed.


Assuntos
Metabolismo dos Lipídeos , Estresse Oxidativo , Peroxidação de Lipídeos , Oxirredução , Carbonilação Proteica
16.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467687

RESUMO

Heart failure (HF) is a complex disease due to the intricate interplay of several mechanisms, which therefore implies the need for a multimarker strategy to better personalize the care of patients with HF. In this study, we developed a targeted mass spectrometry approach based on multiple reaction monitoring (MRM) to measure multiple circulating protein biomarkers, involved in cardiovascular disease, to address their relevance in the human HF, intending to assess the feasibility of the workflow in the disease monitoring and risk stratification. In this study, we analyzed a total of 60 plasma proteins in 30 plasma samples from eight control subjects and 22 age- and gender- matched HF patients. We identified a panel of four plasma proteins, namely Neuropilin-2, Beta 2 microglobulin, alpha-1-antichymotrypsin, and complement component C9, that were more abundant in HF patients in relation to disease severity and pulmonary dysfunction. Moreover, we showed the ability of the combination of these candidate proteins to discriminate, with sufficient accuracy, HF patients from healthy subjects. In conclusion, we demonstrated the feasibility and potential of a proteomic workflow based on MRM mass spectrometry for the evaluation of multiple proteins in human plasma and the identification of a panel of biomarkers of HF severity.


Assuntos
Biomarcadores/análise , Insuficiência Cardíaca/sangue , Proteômica/métodos , Adulto , Idoso , Estudos de Casos e Controles , Complemento C9/análise , Feminino , Humanos , Modelos Lineares , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Neuropilina-2/análise , Consumo de Oxigênio , Proteoma , Risco , alfa 1-Antitripsina/análise , Microglobulina beta-2/análise
17.
Antioxid Redox Signal ; 34(1): 49-98, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32640910

RESUMO

Significance: Atherosclerotic cardiovascular diseases (ACVDs) continue to be a primary cause of mortality worldwide in adults aged 35-70 years, occurring more often in countries with lower economic development, and they constitute an ever-growing global burden that has a considerable socioeconomic impact on society. The ACVDs encompass diverse pathologies such as coronary artery disease and heart failure (HF), among others. Recent Advances: It is known that oxidative stress plays a relevant role in ACVDs and some of its effects are mediated by lipid oxidation. In particular, lipid peroxidation (LPO) is a process under which oxidants such as reactive oxygen species attack unsaturated lipids, generating a wide array of oxidation products. These molecules can interact with circulating lipoproteins, to diffuse inside the cell and even to cross biological membranes, modifying target nucleophilic sites within biomolecules such as DNA, lipids, and proteins, and resulting in a plethora of biological effects. Critical Issues: This review summarizes the evidence of the effect of LPO in the development and progression of atherosclerosis-based diseases, HF, and other cardiovascular diseases, highlighting the role of protein adduct formation. Moreover, potential therapeutic strategies targeted at lipoxidation in ACVDs are also discussed. Future Directions: The identification of valid biomarkers for the detection of lipoxidation products and adducts may provide insights into the improvement of the cardiovascular risk stratification of patients and the development of therapeutic strategies against the oxidative effects that can then be applied within a clinical setting.


Assuntos
Aterosclerose/metabolismo , Peroxidação de Lipídeos , Animais , Aterosclerose/etiologia , Aterosclerose/patologia , Suscetibilidade a Doenças , Humanos , Metabolismo dos Lipídeos , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio
18.
Diagnostics (Basel) ; 10(10)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086718

RESUMO

Extracellular vesicles (EVs) are lipid-bound vesicles released from cells under physiological and pathological conditions. Basing on biogenesis, dimension, content and route of secretion, they can be classified into exosomes, microvesicles (MVs) and apoptotic bodies. EVs have a key role as bioactive mediators in intercellular communication, but they are also involved in other physiological processes like immune response, blood coagulation, and tissue repair. The interest in studying EVs has increased over the years due to their involvement in several diseases, such as cardiovascular diseases (CVDs), and their potential role as biomarkers in diagnosis, therapy, and in drug delivery system development. Nowadays, the improvement of mass spectrometry (MS)-based techniques allows the characterization of the EV protein composition to deeply understand their role in several diseases. In this review, a critical overview is provided on the EV's origin and physical properties, as well as their emerging functional role in both physiological and disease conditions, focusing attention on the role of exosomes in CVDs. The most important cardiac exosome proteomic studies will be discussed giving a qualitative and quantitative characterization of the exosomal proteins that could be used in future as new potential diagnostic markers or targets for specific therapies.

19.
Antioxidants (Basel) ; 9(8)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824562

RESUMO

Human serum albumin (HSA) is associated with several physiological functions, such as maintaining oncotic pressure and microvascular integrity, among others. It also represents the major and predominant antioxidant in plasma due to the presence of the Cys34 sulfhydryl group. In this study, we assessed qualitative and quantitative changes in HSA in patients with heart failure (HF) and their relationship with the severity of the disease. We detected by means of mass spectrometry a global decrease of the HSA content in the plasma of HF patients in respect to control subjects, a significant increase of thio-HSA with a concomitant decrease in the reduced form of albumin. Cysteine and, at a lesser extent, homocysteine represent the most abundant thiol bound to HSA. A strong inverse correlation was also observed between cysteine-HSA and peak VO2/kg, an index of oxygen consumption associated with HF severity. Moreover, in HL-1 cardiomyocytes incubated with H2O2, we showed a significant decrease of cell viability in cells treated with thio-HSA in respect to restored native-HSA. In conclusion, we found for the first time that S-thiolation of albumin is increased in the plasma of HF patients and induced changes in the structure and antioxidant function of HSA, likely contributing to HF progression.

20.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630608

RESUMO

Platelets are a heterogeneous small anucleate blood cell population with a central role both in physiological haemostasis and in pathological states, spanning from thrombosis to inflammation, and cancer. Recent advances in proteomic studies provided additional important information concerning the platelet biology and the response of platelets to several pathophysiological pathways. Platelets circulate systemically and can be easily isolated from human samples, making proteomic application very interesting for characterizing the complexity of platelet functions in health and disease as well as for identifying and quantifying potential platelet proteins as biomarkers and novel antiplatelet therapeutic targets. To date, the highly dynamic protein content of platelets has been studied in resting and activated platelets, and several subproteomes have been characterized including platelet-derived microparticles, platelet granules, platelet releasates, platelet membrane proteins, and specific platelet post-translational modifications. In this review, a critical overview is provided on principal platelet proteomic studies focused on platelet biology from signaling to granules content, platelet proteome changes in several diseases, and the impact of drugs on platelet functions. Moreover, recent advances in quantitative platelet proteomics are discussed, emphasizing the importance of targeted quantification methods for more precise, robust and accurate quantification of selected proteins, which might be used as biomarkers for disease diagnosis, prognosis and therapy, and their strong clinical impact in the near future.


Assuntos
Plaquetas/metabolismo , Plaquetas/fisiologia , Biomarcadores/metabolismo , Humanos , Ativação Plaquetária , Inibidores da Agregação Plaquetária/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Proteômica/métodos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...