Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Data Brief ; 47: 109011, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36923020

RESUMO

A monitoring of apple fruit, shoot and trunk growth was performed on 15 trees, equally split according to three treatments, which determined heavily contrasting carbon assimilate availability: unmanipulated trees (FRU), thinned trees (THI) and defruited trees (DEF). Several variables describe the vegetative growth on FRU and DEF trees (shoot length, base diameter, number of fruits on shoot, and height, diameter, pruning intensity and number of fruits of the branch carrying the shoot; trunk circumference), as well as the fruit growth on FRU and THI trees (3 fruit diameters). Additional measurements from ancillary shoots (apical diameter, number of leaves, leaf dry weight, stem dry weight, fresh mass, volume) and fruits (3 diameters, dry weight) from trees undergoing the same treatments, provide a more complete (destructive) characterization of organs growth, thanks to several measurements performed across the growing season. Organs are provided with categorical variables indicating the treatment, tree, canopy height, orientation (for both shoots and fruit), as well as branch and shoot identifiers, so that hierarchical modeling of the dataset can be performed. The dataset is completed with dates and day of the year of the measurements and the accumulated growing degree days from full bloom. Data can be used to calculate apple tree absolute and relative growth rates, maximum potential growth rates, as well as shoot growth responses to thinning and pruning. The dataset can also be used to calibrate allometric relationships, estimate structural apple tree growth parameters and their variability.

2.
Ann Bot ; 126(4): 571-585, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31642506

RESUMO

BACKGROUND AND AIMS: Carbon allocation in plants is usually represented at a topological scale, specific to each model. This makes the results obtained with different models, and the impact of their scales of representation, difficult to compare. In this study, we developed a multi-scale carbon allocation model (MuSCA) that allows the use of different, user-defined, topological scales of a plant, and assessment of the impact of each spatial scale on simulated results and computation time. METHODS: Model multi-scale consistency and behaviour were tested on three realistic apple tree structures. Carbon allocation was computed at five scales, spanning from the metamer (the finest scale, used as a reference) up to first-order branches, and for different values of a sap friction coefficient. Fruit dry mass increments were compared across spatial scales and with field data. KEY RESULTS: The model was able to represent effects of competition for carbon assimilates on fruit growth. Intermediate friction parameter values provided results that best fitted field data. Fruit growth simulated at the metamer scale differed of ~1 % in respect to results obtained at growth unit scale and up to 60 % in respect to first order branch and fruiting unit scales. Generally, the coarser the spatial scale the more predicted fruit growth diverged from the reference. Coherence in fruit growth across scales was also differentially impacted, depending on the tree structure considered. Decreasing the topological resolution reduced computation time by up to four orders of magnitude. CONCLUSIONS: MuSCA revealed that the topological scale has a major influence on the simulation of carbon allocation. This suggests that the scale should be a factor that is carefully evaluated when using a carbon allocation model, or when comparing results produced by different models. Finally, with MuSCA, trade-off between computation time and prediction accuracy can be evaluated by changing topological scales.


Assuntos
Malus , Carbono , Frutas , Folhas de Planta
3.
Sci Rep ; 7(1): 9632, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851977

RESUMO

Concentrations of atmospheric carbon dioxide (CO2) have continued to increase whereas atmospheric deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades. Using time series of flux observations from 23 forests distributed throughout Europe and the USA, and generalised mixed models, we found that forest-level net ecosystem production and gross primary production have increased by 1% annually from 1995 to 2011. Statistical models indicated that increasing atmospheric CO2 was the most important factor driving the increasing strength of carbon sinks in these forests. We also found that the reduction of sulphur deposition in Europe and the USA lead to higher recovery in ecosystem respiration than in gross primary production, thus limiting the increase of carbon sequestration. By contrast, trends in climate and nitrogen deposition did not significantly contribute to changing carbon fluxes during the studied period. Our findings support the hypothesis of a general CO2-fertilization effect on vegetation growth and suggest that, so far unknown, sulphur deposition plays a significant role in the carbon balance of forests in industrialized regions. Our results show the need to include the effects of changing atmospheric composition, beyond CO2, to assess future dynamics of carbon-climate feedbacks not currently considered in earth system/climate modelling.

4.
Environ Res Lett ; 11(2)2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28458719

RESUMO

Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...