Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 797, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37952023

RESUMO

Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha-1 in the top 30 cm and 231 ± 134 Mg SOC ha-1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies.

2.
Sci Total Environ ; 649: 264-283, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30173034

RESUMO

Organic-poor, permeable quartz sands are often present at land-sea transition zones in coastal regions. Yet, the biogeochemical cycles of carbon, sulfur, and iron are not well studied here. The aim of this work was, therefore, to improve our understanding regarding the chemical processes in these prominent coastal sediments. A 10 m core was collected at a dune base of the barrier island Spiekeroog, Germany, for this purpose. Additionally, groundwater was sampled from a multi-level well for one year to record seasonal hydrochemical variations. Methods included the analyses of geochemical (total carbon, total inorganic carbon, reactive iron, total sulfur, reduced inorganic sulfur) and hydrochemical parameters (field parameters, major ions, DOC, and molecular compositions of DOM), as well as stable sulfur isotopes (δ34S-sulfate, -sulfide, -total reduced inorganic sulfur). Moreover, optically stimulated luminescence (OSL) dating was applied. Results show that the core sediments are very young (<500 a) and were rapidly deposited. They are characterized by remarkably low contents of organic carbon (<0.1% dw.), reactive iron (~10 mmol/kg), and iron sulfides (<3 mmol/kg). Groundwater salinities were low in the top core sediments and increased at depth during most times of the year. However, the sampling site is subject to (seasonally) varying salinities, which could be linked to the biogeochemical cycles. For instance, the infiltration of seawater-derived labile DOM during inundation events drives microbial respiration besides sedimentary organic matter. Oxygen and nitrate were the dominant electron acceptors for the decomposition of organic matter in near-surface groundwater, while sulfate reduction was constrained to the lower brackish sediments. Here, authigenic pyrite formation was inferred based on the detection of dissolved sulfide, intact pyrite framboids, and matching stable sulfur isotope signatures of dissolved and solid sulfides. We concluded that the extremely low organic carbon contents limit pyrite formation in the organic-poor, permeable quartz sands.

3.
Carbon Balance Manag ; 5(1): 1, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20420668

RESUMO

BACKGROUND: Until recently, a lot of arable lands were abandoned in many countries of the world and, especially, in Russia, where about half a million square kilometers of arable lands were abandoned in 1961-2007. The soils at these fallows undergo a process of natural restoration (or self-restoration) that changes the balance of soil organic matter (SOM) supply and mineralization. RESULTS: A soil chronosequence study, covering the ecosystems of 3, 20, 55, 100, and 170 years of self-restoration in southern taiga zone, shows that soil organic content of mineral horizons remains relatively stable during the self-restoration. This does not imply, however, that SOM pools remain steady. The C/N ratio of active SOM reached steady state after 55 years, and increased doubly (from 12.5 - 15.6 to 32.2-33.8). As to the C/N ratio of passive SOM, it has been continuously increasing (from 11.8-12.7 to 19.0-22.8) over the 170 years, and did not reach a steady condition. CONCLUSION: The results of the study imply that soil recovery at the abandoned arable sandy lands of taiga is incredibly slow process. Not only soil morphological features of a former ploughing remained detectable but also the balance of soil organic matter input and mineralization remained unsteady after 170 years of self-restoration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...