Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571717

RESUMO

In situ weather sensors aiming at the measurement of liquid atmospheric precipitation (rainfall) experienced limited conceptual innovation in recent decades, except for the data recording and transmission components [...].

2.
Open Res Eur ; 3: 169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38405183

RESUMO

Opportunistic sensors are increasingly used for rainfall measurement. However, their raw data are collected by a variety of systems that are often not primarily intended for rainfall monitoring, resulting in a plethora of different data formats and a lack of common standards. This hinders the sharing of opportunistic sensing (OS) data, their automated processing, and, at the end, their practical usage and integration into standard observation systems. This paper summarises the experiences of the more than 100 members of the OpenSense Cost Action involved in the OS of rainfall. We review the current practice of collecting and storing precipitation OS data and corresponding metadata, and propose new common guidelines describing the requirements on data and metadata collection, harmonising naming conventions, and defining human-readable and machine readable file formats for data and metadata storage. We focus on three sensors identified by the OpenSense community as prominent representatives of the OS of precipitation: Commercial microwave links (CML): fixed point-to-point radio links mainly used as backhauling connections in telecommunication networks Satellite microwave links (SML): radio links between geostationary Earth orbit (GEO) satellites and ground user terminals. Personal weather stations (PWS): non-professional meteorological sensors owned by citizens. The conventions presented in this paper are primarily designed for storing, handling, and sharing historical time series and do not consider specific requirements for using OS data in real time for operational purposes. The conventions are already now accepted by the ever growing OpenSense community and represent an important step towards automated processing of OS raw data and community development of joint OS software packages.


Opportunistic sensors, devices primarily intended not intended for sensing, are increasingly used for rainfall measurement. The lack of conventions defining which data should be stored and how, makes it difficult to automatically process the data and integrate these observations into standard monitoring networks. This paper reviews current practice of collecting and storing precipitation opportunistic sensing (OS) data based on the experience of more than 100 members of the OpenSense Cost Action and suggest common data format standards. We focus on three sensors identified by the OpenSense community as prominent representatives of the OS of precipitation: Commercial microwave links (CML), Satellite Microwave Links (SML), and Personal Weather Stations (PWS). The conventions are already now accepted by the ever growing OpenSense community and represent an important step towards automated processing of OS raw data and community development of joint OS software packages.

3.
Sensors (Basel) ; 22(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36146367

RESUMO

The demand for accurate rainfall rate maps is growing ever more. This paper proposes a novel algorithm to estimate the rainfall rate map from the attenuation measurements coming from both broadcast satellite links (BSLs) and commercial microwave links (CMLs). The approach we pursue is based on an iterative procedure which extends the well-known GMZ algorithm to fuse the attenuation data coming from different links in a three-dimensional scenario, while also accounting for the virga phenomenon as a rain vertical attenuation model. We experimentally prove the convergence of the procedures, showing how the estimation error decreases for every iteration. The numerical results show that adding the BSL links to a pre-existent CML network boosts the accuracy performance of the estimated rainfall map, improving up to 50% the correlation metrics. Moreover, our algorithm is shown to be robust to errors concerning the virga parametrization, proving the possibility of obtaining good estimation performance without the need for precise and real-time estimation of the virga parameters.

4.
Sensors (Basel) ; 21(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502767

RESUMO

Recent years have witnessed a growing interest in techniques and systems for rainfall surveillance on regional scale, with increasingly stringent requirements in terms of the following: (i) accuracy of rainfall rate measurements, (ii) adequate density of sensors over the territory, (iii) space-time continuity and completeness of data and (iv) capability to elaborate rainfall maps in near real time. The devices deployed to monitor the precipitation fields are traditionally networks of rain gauges distributed throughout the territory, along with weather radars and satellite remote sensors operating in the optical or infrared band, none of which, however, are suitable for full compliance to all of the requirements cited above. More recently, a different approach to rain rate estimation techniques has been proposed and investigated, based on the measurement of the attenuation induced by rain on signals of pre-existing radio networks either in terrestrial links, e.g., the backhaul connections in cellular networks, or in satellite-to-earth links and, among the latter, notably those between geostationary broadcast satellites and domestic subscriber terminals in the Ku and Ka bands. Knowledge of the above rain-induced attenuation permits the retrieval of the corresponding rain intensity provided that a number of meteorological and geometric parameters are known and ultimately permits estimating the rain rate locally at the receiver site. In this survey paper, we specifically focus on such a type of "opportunistic" systems for rain field monitoring, which appear very promising in view of the wide diffusion over the territory of low-cost domestic terminals for the reception of satellite signals, prospectively allowing for a considerable geographical capillarity in the distribution of sensors, at least in more densely populated areas. The purpose of the paper is to present a broad albeit synthetic overview of the numerous issues inherent in the above rain monitoring approach, along with a number of solutions and algorithms proposed in the literature in recent years, and ultimately to provide an exhaustive account of the current state of the art. Initially, the main relevant aspects of the satellite link are reviewed, including those related to satellite dynamics, frequency bands, signal formats, propagation channel and radio link geometry, all of which have a role in rainfall rate estimation algorithms. We discuss the impact of all these factors on rain estimation accuracy while also highlighting the substantial differences inherent in this approach in comparison with traditional rain monitoring techniques. We also review the basic formulas relating rain rate intensity to a variation of the received signal level or of the signal-to-noise ratio. Furthermore, we present a comprehensive literature survey of the main research issues for the aforementioned scenario and provide a brief outline of the algorithms proposed for their solution, highlighting their points of strength and weakness. The paper includes an extensive list of bibliographic references from which the material presented herein was taken.


Assuntos
Algoritmos , Chuva
5.
J Hydrometeorol ; 22(5): 1333-1350, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34054351

RESUMO

Measuring rainfall is complex, due to the high temporal and spatial variability of precipitation, especially in a changing climate, but it is of great importance for all the scientific and operational disciplines dealing with rainfall effects on the environment, human activities, and economy. Microwave (MW) telecommunication links carry information on rainfall rates along their path, through signal attenuation caused by raindrops, and can become measurements of opportunity, offering inexpensive chances to augment information without deploying additional infrastructures, at the cost of some smart processing. Processing satellite telecom signals bring some specific complexities related to the effects of rainfall boundaries, melting layer, and non-weather attenuations, but with the potential to provide worldwide precipitation data with high temporal and spatial samplings. These measurements have to be processed according to the probabilistic nature of the information they carry. An EnKF-based (Ensemble Kalman Filter) method has been developed to dynamically retrieve rainfall fields in gridded domains, which manages such probabilistic information and exploits the high sampling rate of measurements. The paper presents the EnKF method with some representative tests from synthetic 3D experiments. Ancillary data are assumed as from worldwide-available operational meteorological satellites and models, for advection, initial and boundary conditions, rain height. The method reproduces rainfall structures and quantities in a correct way, and also manages possible link outages. It results computationally viable also for operational implementation and applicable to different link observation geometries and characteristics.

6.
Sensors (Basel) ; 17(8)2017 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-28805692

RESUMO

We present the NEFOCAST project (named by the contraction of "Nefele", which is the Italian spelling for the mythological cloud nymph Nephele, and "forecast"), funded by the Tuscany Region, about the feasibility of a system for the detection and monitoring of precipitation fields over the regional territory based on the use of a widespread network of new-generation Eutelsat "SmartLNB" (smart low-noise block converter) domestic terminals. Though primarily intended for interactive satellite services, these devices can also be used as weather sensors, as they have the capability of measuring the rain-induced attenuation incurred by the downlink signal and relaying it on an auxiliary return channel. We illustrate the NEFOCAST system architecture, consisting of the network of ground sensor terminals, the space segment, and the service center, which has the task of processing the information relayed by the terminals for generating rain field maps. We discuss a few methods that allow the conversion of a rain attenuation measurement into an instantaneous rainfall rate. Specifically, we discuss an exponential model relating the specific rain attenuation to the rainfall rate, whose coefficients were obtained from extensive experimental data. The above model permits the inferring of the rainfall rate from the total signal attenuation provided by the SmartLNB and from the link geometry knowledge. Some preliminary results obtained from a SmartLNB installed in Pisa are presented and compared with the output of a conventional tipping bucket rain gauge. It is shown that the NEFOCAST sensor is able to track the fast-varying rainfall rate accurately with no delay, as opposed to a conventional gauge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...