Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8272, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594253

RESUMO

Human hemoglobin (Hb) is the preferred iron source of Staphylococcus aureus. This pathogenic bacterium exploits a sophisticated protein machinery called Iron-regulated surface determinant (Isd) system to bind Hb, extract and internalize heme, and finally degrade it to complete iron acquisition. IsdB, the surface exposed Hb receptor, is a proven virulence factor of S. aureus and the inhibition of its interaction with Hb can be pursued as a strategy to develop new classes of antimicrobials. To identify small molecules able to disrupt IsdB:Hb protein-protein interactions (PPIs), we carried out a structure-based virtual screening campaign and developed an ad hoc immunoassay to screen the retrieved set of commercially available compounds. Saturation-transfer difference (STD) NMR was applied to verify specific interactions of a sub-set of molecules, chosen based on their efficacy in reducing the amount of Hb bound to IsdB. Among molecules for which direct binding was verified, the best hit was submitted to ITC analysis to measure the binding affinity to Hb, which was found to be in the low micromolar range. The results demonstrate the viability of the proposed in silico/in vitro experimental pipeline to discover and test IsdB:Hb PPI inhibitors. The identified lead compound will be the starting point for future SAR and molecule optimization campaigns.


Assuntos
Proteínas de Transporte de Cátions , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/metabolismo , Hemoglobinas/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Heme/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Ferro/metabolismo
2.
J Chem Theory Comput ; 20(8): 3335-3348, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38563746

RESUMO

Protein-protein interactions mediate most molecular processes in the cell, offering a significant opportunity to expand the set of known druggable targets. Unfortunately, targeting these interactions can be challenging due to their typically flat and featureless interaction surfaces, which often change as the complex forms. Such surface changes may reveal hidden (cryptic) druggable pockets. Here, we analyze a set of well-characterized protein-protein interactions harboring cryptic pockets and investigate the predictive power of current computational methods. Based on our observations, we developed a new computational strategy, SWISH-X (SWISH Expanded), which combines the established cryptic pocket identification capabilities of SWISH with the rapid temperature range exploration of OPES MultiThermal. SWISH-X is able to reliably identify cryptic pockets at protein-protein interfaces while retaining its predictive power for revealing cryptic pockets in isolated proteins, such as TEM-1 ß-lactamase.


Assuntos
Proteínas , beta-Lactamases , beta-Lactamases/química , beta-Lactamases/metabolismo , Proteínas/química , Proteínas/metabolismo , Ligação Proteica , Sítios de Ligação , Simulação de Dinâmica Molecular
3.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38139809

RESUMO

The worldwide emergence and dissemination of Gram-negative bacteria expressing metallo-ß-lactamases (MBLs) menace the efficacy of all ß-lactam antibiotics, including carbapenems, a last-line treatment usually restricted to severe pneumonia and urinary tract infections. Nonetheless, no MBL inhibitor is yet available in therapy. We previously identified a series of 1,2,4-triazole-3-thione derivatives acting as micromolar inhibitors of MBLs in vitro, but devoid of synergistic activity in microbiological assays. Here, via a multidisciplinary approach, including molecular modelling, synthesis, enzymology, microbiology, and X-ray crystallography, we optimized this series of compounds and identified low micromolar inhibitors active against clinically relevant MBLs (NDM-1- and VIM-type). The best inhibitors increased, to a certain extent, the susceptibility of NDM-1- and VIM-4-producing clinical isolates to meropenem. X-ray structures of three selected inhibitors in complex with NDM-1 elucidated molecular recognition at the base of potency improvement, confirmed in silico predicted orientation, and will guide further development steps.

4.
Int J Biol Macromol ; 246: 125609, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37394218

RESUMO

The protein NLRP3 and its complexes are associated with an array of inflammatory pathologies, among which neurodegenerative, autoimmune, and metabolic diseases. Targeting the NLRP3 inflammasome represents a promising strategy for easing the symptoms of pathologic neuroinflammation. When the inflammasome is activated, NLRP3 undergoes a conformational change triggering the production of pro-inflammatory cytokines IL-1ß and IL-18, as well as cell death by pyroptosis. NLRP3 nucleotide-binding and oligomerization (NACHT) domain plays a crucial role in this function by binding and hydrolysing ATP and is primarily responsible, together with conformational transitions involving the PYD domain, for the complex-assembly process. Allosteric ligands proved able to induce NLRP3 inhibition. Herein, we examine the origins of allosteric inhibition of NLRP3. Through the use of molecular dynamics (MD) simulations and advanced analysis methods, we provide molecular-level insights into how allosteric binding affects protein structure and dynamics, remodelling of the conformational ensembles populated by the protein, with key reverberations on how NLRP3 is preorganized for assembly and ultimately function. The data are used to develop a Machine Learning model to define the protein as Active or Inactive, only based on the analysis of its internal dynamics. We propose this model as a novel tool to select allosteric ligands.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ligantes , Citocinas , Desenho de Fármacos , Interleucina-1beta/metabolismo
5.
Eur J Med Chem ; 257: 115542, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37290185

RESUMO

Inspired by the recent advancements in understanding the binding mode of sulfonylurea-based NLRP3 inhibitors to the NLRP3 sensor protein, we developed new NLRP3 inhibitors by replacing the central sulfonylurea moiety with different heterocycles. Computational studies evidenced that some of the designed compounds were able to maintain important interaction within the NACHT domain of the target protein similarly to the most active sulfonylurea-based NLRP3 inhibitors. Among the studied compounds, the 1,3,4-oxadiazol-2-one derivative 5 (INF200) showed the most promising results being able to prevent NLRP3-dependent pyroptosis triggered by LPS/ATP and LPS/MSU by 66.3 ± 6.6% and 61.6 ± 11.5% and to reduce IL-1ß release (35.5 ± 8.8% µM) at 10 µM in human macrophages. The selected compound INF200 (20 mg/kg/day) was then tested in an in vivo rat model of high-fat diet (HFD)-induced metaflammation to evaluate its beneficial cardiometabolic effects. INF200 significantly counteracted HFD-dependent "anthropometric" changes, improved glucose and lipid profiles, and attenuated systemic inflammation and biomarkers of cardiac dysfunction (particularly BNP). Hemodynamic evaluation on Langendorff model indicate that INF200 limited myocardial damage-dependent ischemia/reperfusion injury (IRI) by improving post-ischemic systolic recovery and attenuating cardiac contracture, infarct size, and LDH release, thus reversing the exacerbation of obesity-associated damage. Mechanistically, in post-ischemic hearts, IFN200 reduced IRI-dependent NLRP3 activation, inflammation, and oxidative stress. These results highlight the potential of the novel NLRP3 inhibitor, INF200, and its ability to reverse the unfavorable cardio-metabolic dysfunction associated with obesity.


Assuntos
Traumatismo por Reperfusão Miocárdica , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Animais , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos , Lipopolissacarídeos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Teóricos
6.
Molecules ; 27(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500256

RESUMO

Cannabinoid type 1 (hCB1) and type 2 (hCB2) receptors are pleiotropic and crucial targets whose signaling contributes to physiological homeostasis and its restoration after injury. Being predominantly expressed in peripheral tissues, hCB2R represents a safer therapeutic target than hCB1R, which is highly expressed in the brain, where it regulates processes related to cognition, memory, and motor control. The development of hCB2R ligands represents a therapeutic opportunity for treating diseases such as pain, inflammation and cancer. Identifying new selective scaffolds for cannabinoids and determining the structural determinants responsible for agonism and antagonism are priorities in drug design. In this work, a series of N-[1,3-dialkyl(aryl)-2-oxoimidazolidin-4-ylidene]-aryl(alkyl)sulfonamides is designed and synthesized and their affinity for human hCB1R and hCB2R is determined. Starting with a scaffold selected from the NIH Psychoactive Drug Screening Program Repository, through a combination of molecular modeling and structure-activity relationship studies, we were able to identify the chemical features leading to finely tuned hCB2R selectivity. In addition, an in silico model capable of predicting the functional activity of hCB2R ligands was proposed and validated. The proposed receptor activation/deactivation model enabled the identification of four pure hCB2R-selective agonists that can be used as a starting point for the development of more potent ligands.


Assuntos
Agonistas de Receptores de Canabinoides , Canabinoides , Humanos , Ligação Proteica , Ligantes , Agonistas de Receptores de Canabinoides/química , Relação Estrutura-Atividade , Sulfonamidas , Receptor CB2 de Canabinoide , Receptor CB1 de Canabinoide
7.
Molecules ; 27(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500607

RESUMO

BRAF is a serine/threonine kinase frequently mutated in human cancers. BRAFV600E mutated protein is targeted through the use of kinase inhibitors which are approved for the treatment of melanoma; however, their long-term efficacy is hampered by resistance mechanisms. The PROTAC-induced degradation of BRAFV600E has been proposed as an alternative strategy to avoid the onset of resistance. In this study, we designed a series of compounds where the BRAF kinase inhibitor encorafenib was conjugated to pomalidomide through different linkers. The synthesized compounds maintained their ability to inhibit the kinase activity of mutated BRAF with IC50 values in the 40-88 nM range. Selected compounds inhibited BRAFV600E signaling and cellular proliferation of A375 and Colo205 tumor cell lines. Compounds 10 and 11, the most active of the series, were not able to induce degradation of mutated BRAF. Docking and molecular dynamic studies, conducted in comparison with the efficient BRAF degrader P5B, suggest that a different orientation of the linker bearing the pomalidomide substructure, together with a decreased mobility of the solvent-exposed part of the conjugates, could explain this behavior.


Assuntos
Quimera de Direcionamento de Proteólise , Proteínas Proto-Oncogênicas B-raf , Humanos , Sulfonamidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Mutação
8.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955864

RESUMO

Nuclear receptors (NRs) are transcription factors that play an important role in multiple diseases, such as cancer, inflammation, and metabolic disorders. They share a common structural organization composed of five domains, of which the ligand-binding domain (LBD) can adopt different conformations in response to substrate, agonist, and antagonist binding, leading to distinct transcription effects. A key feature of NRs is, indeed, their intrinsic dynamics that make them a challenging target in drug discovery. This work aims to provide a meaningful investigation of NR structural variability to outline a dynamic profile for each of them. To do that, we propose a methodology based on the computation and comparison of protein cavities among the crystallographic structures of NR LBDs. First, pockets were detected with the FLAPsite algorithm and then an "all against all" approach was applied by comparing each pair of pockets within the same sub-family on the basis of their similarity score. The analysis concerned all the detectable cavities in NRs, with particular attention paid to the active site pockets. This approach can guide the investigation of NR intrinsic dynamics, the selection of reference structures to be used in drug design and the easy identification of alternative binding sites.


Assuntos
Receptores Citoplasmáticos e Nucleares , Fatores de Transcrição , Sítios de Ligação , Ligantes , Domínios Proteicos
9.
Proc Natl Acad Sci U S A ; 119(14): e2116708119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35357971

RESUMO

Iron surface determinant B (IsdB) is a hemoglobin (Hb) receptor essential for hemic iron acquisition by Staphylococcus aureus. Heme transfer to IsdB is possible from oxidized Hb (metHb), but inefficient from Hb either bound to oxygen (oxyHb) or bound to carbon monoxide (HbCO), and encompasses a sequence of structural events that are currently poorly understood. By single-particle cryo-electron microscopy, we determined the structure of two IsdB:Hb complexes, representing key species along the heme extraction pathway. The IsdB:HbCO structure, at 2.9-Å resolution, provides a snapshot of the preextraction complex. In this early stage of IsdB:Hb interaction, the hemophore binds to the ß-subunits of the Hb tetramer, exploiting a folding-upon-binding mechanism that is likely triggered by a cis/trans isomerization of Pro173. Binding of IsdB to α-subunits occurs upon dissociation of the Hb tetramer into α/ß dimers. The structure of the IsdB:metHb complex reveals the final step of the extraction process, where heme transfer to IsdB is completed. The stability of the complex, both before and after heme transfer from Hb to IsdB, is influenced by isomerization of Pro173. These results greatly enhance current understanding of structural and dynamic aspects of the heme extraction mechanism by IsdB and provide insight into the interactions that stabilize the complex before the heme transfer event. This information will support future efforts to identify inhibitors of heme acquisition by S. aureus by interfering with IsdB:Hb complex formation.


Assuntos
Proteínas de Transporte de Cátions , Heme , Hemoglobinas , Proteínas de Transporte de Cátions/química , Microscopia Crioeletrônica , Heme/química , Hemoglobinas/química , Humanos , Ferro/metabolismo
10.
Expert Opin Drug Discov ; 17(4): 377-396, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35262427

RESUMO

INTRODUCTION: The different and relevant roles of GSK-3 are of critical importance since they deal with development, metabolic homeostasis, cell polarity and fate, neuronal growth and differentiation as well as modulation of apoptotic potential. Given their involvement with different diseases, many investigations have been undertaken with the aim of discovering new and promising inhibitors for this target. In this context, atural products represent an invaluable source of active molecules. AREAS COVERED: In order to overcome issues such as poor pharmacokinetic properties or efficacy, frequently associated with natural compounds, different GSK-3ß inhibitors belonging to alkaloid or flavonoid classes have been subjected to structural modifications in order to obtain more potent and safer compounds. Herein, the authors report the results obtained from studies where natural compounds have been used as hits with the aim of providing new kinase inhibitors endowed with a better inhibitory profile. EXPERT OPINION: Structurally modification of natural scaffolds is a proven approach taking advantage of their pharmacological characteristics. Indeed, whatever the strategy adopted is and, despite the limitations associated with the structural complexity of natural products, the authors recommend the use of natural scaffolds as a promising strategy for the discovery of novel and potent GSK-3ß inhibitors.


Assuntos
Antineoplásicos , Produtos Biológicos , Produtos Biológicos/farmacologia , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase , Glicogênio Sintase Quinase 3 beta , Humanos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
11.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34959646

RESUMO

Three open-source anti-kinetoplastid chemical boxes derived from a whole-cell phenotypic screening by GlaxoSmithKline (Tres Cantos Anti-Kinetoplastid Screening, TCAKS) were exploited for the discovery of a novel core structure inspiring new treatments of parasitic diseases targeting the trypansosmatidic pteridine reductase 1 (PTR1) and dihydrofolate reductase (DHFR) enzymes. In total, 592 compounds were tested through medium-throughput screening assays. A subset of 14 compounds successfully inhibited the enzyme activity in the low micromolar range of at least one of the enzymes from both Trypanosoma brucei and Lesihmania major parasites (pan-inhibitors), or from both PTR1 and DHFR-TS of the same parasite (dual inhibitors). Molecular docking studies of the protein-ligand interaction focused on new scaffolds not reproducing the well-known antifolate core clearly explaining the experimental data. TCMDC-143249, classified as a benzenesulfonamide derivative by the QikProp descriptor tool, showed selective inhibition of PTR1 and growth inhibition of the kinetoplastid parasites in the 5 µM range. In our work, we enlarged the biological profile of the GSK Kinetobox and identified new core structures inhibiting selectively PTR1, effective against the kinetoplastid infectious protozoans. In perspective, we foresee the development of selective PTR1 and DHFR inhibitors for studies of drug combinations.

12.
Molecules ; 26(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209843

RESUMO

In the search for new chemical scaffolds able to afford NLRP3 inflammasome inhibitors, we used a pharmacophore-hybridization strategy by combining the structure of the acrylic acid derivative INF39 with the 1-(piperidin-4-yl)1,3-dihydro-2H-benzo[d]imidazole-2-one substructure present in HS203873, a recently identified NLRP3 binder. A series of differently modulated benzo[d]imidazole-2-one derivatives were designed and synthesised. The obtained compounds were screened in vitro to test their ability to inhibit NLRP3-dependent pyroptosis and IL-1ß release in PMA-differentiated THP-1 cells stimulated with LPS/ATP. The selected compounds were evaluated for their ability to reduce the ATPase activity of human recombinant NLRP3 using a newly developed assay. From this screening, compounds 9, 13 and 18, able to concentration-dependently inhibit IL-1ß release in LPS/ATP-stimulated human macrophages, emerged as the most promising NLRP3 inhibitors of the series. Computational simulations were applied for building the first complete model of the NLRP3 inactive state and for identifying possible binding sites available to the tested compounds. The analyses led us to suggest a mechanism of protein-ligand binding that might explain the activity of the compounds.


Assuntos
Imidazóis , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Piroptose/efeitos dos fármacos , Humanos , Imidazóis/síntese química , Imidazóis/química , Imidazóis/farmacologia , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células THP-1
13.
Molecules ; 26(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799482

RESUMO

Flavonoids are plant bioactives that are recognized as hormone-like polyphenols because of their similarity to the endogenous sex steroids 17ß-estradiol and testosterone, and to their estrogen- and androgen-like activity. Most efforts to verify flavonoid binding to nuclear receptors (NRs) and explain their action have been focused on ERα, while less attention has been paid to other nuclear and non-nuclear membrane androgen and estrogen receptors. Here, we investigate six flavonoids (apigenin, genistein, luteolin, naringenin, quercetin, and resveratrol) that are widely present in fruits and vegetables, and often used as replacement therapy in menopause. We performed comparative computational docking simulations to predict their capability of binding nuclear receptors ERα, ERß, ERRß, ERRγ, androgen receptor (AR), and its variant ART877A and membrane receptors for androgens, i.e., ZIP9, GPRC6A, OXER1, TRPM8, and estrogens, i.e., G Protein-Coupled Estrogen Receptor (GPER). In agreement with data reported in literature, our results suggest that these flavonoids show a relevant degree of complementarity with both estrogen and androgen NR binding sites, likely triggering genomic-mediated effects. It is noteworthy that reliable protein-ligand complexes and estimated interaction energies were also obtained for some suggested estrogen and androgen membrane receptors, indicating that flavonoids could also exert non-genomic actions. Further investigations are needed to clarify flavonoid multiple genomic and non-genomic effects. Caution in their administration could be necessary, until the safe assumption of these natural molecules that are largely present in food is assured.


Assuntos
Androgênios/metabolismo , Núcleo Celular/metabolismo , Estrogênios/metabolismo , Flavonoides/metabolismo , Ligação Proteica/fisiologia , Receptores de Superfície Celular/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Humanos , Simulação de Acoplamento Molecular , Receptores de Estrogênio , Testosterona/metabolismo
14.
FEBS J ; 288(9): 3034-3054, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33249721

RESUMO

Human serine racemase (hSR) catalyzes the biosynthesis of D-serine, an obligatory co-agonist of the NMDA receptors. It was previously found that the reversible S-nitrosylation of Cys113 reduces hSR activity. Here, we show by site-directed mutagenesis, fluorescence spectroscopy, mass spectrometry, and molecular dynamics that S-nitrosylation stabilizes an open, less-active conformation of the enzyme. The reaction of hSR with either NO or nitroso donors is conformation-dependent and occurs only in the conformation stabilized by the allosteric effector ATP, in which the ε-amino group of Lys114 acts as a base toward the thiol group of Cys113. In the closed conformation stabilized by glycine-an active-site ligand of hSR-the side chain of Lys114 moves away from that of Cys113, while the carboxyl side-chain group of Asp318 moves significantly closer, increasing the thiol pKa and preventing the reaction. We conclude that ATP binding, glycine binding, and S-nitrosylation constitute a three-way regulation mechanism for the tight control of hSR activity. We also show that Cys113 undergoes H2 O2 -mediated oxidation, with loss of enzyme activity, a reaction also dependent on hSR conformation.


Assuntos
Regulação Alostérica/genética , Conformação Proteica , Racemases e Epimerases/ultraestrutura , Sítios de Ligação , Domínio Catalítico/genética , Glicina/genética , Humanos , Cinética , Oxirredução , Racemases e Epimerases/química , Racemases e Epimerases/genética
15.
Antibiotics (Basel) ; 9(11)2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233339

RESUMO

ß-lactamases (BLs) represent the most frequent cause of antimicrobial resistance in Gram-negative bacteria. Despite the continuous efforts in the development of BL inhibitors (BLIs), new BLs able to hydrolyze the last developed antibiotics rapidly emerge. Moreover, the insurgence rate of effective mutations is far higher than the release of BLIs able to counteract them. This results in a shortage of antibiotics that is menacing the effective treating of infectious diseases. The situation is made even worse by the co-expression in bacteria of BLs with different mechanisms and hydrolysis spectra, and by the lack of inhibitors able to hit them all. Differently from other targets, BL flexibility has not been deeply exploited for drug design, possibly because of the small protein size, for their apparent rigidity and their high fold conservation. In this mini-review, we discuss the evidence for BL binding site dynamics being crucial for catalytic efficiency, mutation effect, and for the design of new inhibitors. Then, we report on identified allosteric sites in BLs and on possible allosteric inhibitors, as a strategy to overcome the frequent occurrence of mutations in BLs and the difficulty of competing efficaciously with substrates. Nevertheless, allosteric inhibitors could work synergistically with traditional inhibitors, increasing the chances of restoring bacterial susceptibility towards available antibiotics.

16.
Sci Rep ; 10(1): 12763, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728062

RESUMO

Bacteria are known to evade ß-lactam antibiotic action by producing ß-lactamases (BLs), including carbapenemases, which are able to hydrolyze nearly all available ß-lactams. The production of BLs represents one of the best known and most targeted mechanisms of resistance in bacteria. We have performed the parallel screening of commercially available compounds against a panel of clinically relevant BLs: class A CTX-M-15 and KPC-2, subclass B1 NDM-1 and VIM-2 MBLs, and the class C P. aeruginosa AmpC. The results show that all BLs prefer scaffolds having electron pair donors: KPC-2 is preferentially inhibited by sulfonamide and tetrazole-based derivatives, NDM-1 by compounds bearing a thiol, a thiosemicarbazide or thiosemicarbazone moiety, while VIM-2 by triazole-containing molecules. Few broad-spectrum BLs inhibitors were identified; among these, compound 40 potentiates imipenem activity against an NDM-1-producing E. coli clinical strain. The binary complexes of the two most promising compounds binding NDM-1 and VIM-2 were obtained at high resolution, providing strong insights to improve molecular docking simulations, especially regarding the interaction of MBLs with inhibitors.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Serina/química , Inibidores de beta-Lactamases/farmacologia , Antibacterianos/farmacologia , Cristalografia por Raios X , Bases de Dados de Proteínas , Desenho de Fármacos , Descoberta de Drogas , Escherichia coli/efeitos dos fármacos , Hidrólise , Ligantes , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Semicarbazidas/química , Compostos de Sulfidrila/química , Sulfonamidas/química , Tetrazóis/química , beta-Lactamases
17.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245010

RESUMO

Nutritional immunity is a form of innate immunity widespread in both vertebrates and invertebrates. The term refers to a rich repertoire of mechanisms set up by the host to inhibit bacterial proliferation by sequestering trace minerals (mainly iron, but also zinc and manganese). This strategy, selected by evolution, represents an effective front-line defense against pathogens and has thus inspired the exploitation of iron restriction in the development of innovative antimicrobials or enhancers of antimicrobial therapy. This review focuses on the mechanisms of nutritional immunity, the strategies adopted by opportunistic human pathogen Staphylococcus aureus to circumvent it, and the impact of deletion mutants on the fitness, infectivity, and persistence inside the host. This information finally converges in an overview of the current development of inhibitors targeting the different stages of iron uptake, an as-yet unexploited target in the field of antistaphylococcal drug discovery.


Assuntos
Antibacterianos/farmacologia , Interações Hospedeiro-Patógeno , Imunidade , Ferro/metabolismo , Fenômenos Fisiológicos da Nutrição , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Virulência/efeitos dos fármacos
18.
Pharmaceuticals (Basel) ; 13(3)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213902

RESUMO

The emergence of bacteria that co-express serine- and metallo- carbapenemases is a threat to the efficacy of the available ß-lactam antibiotic armamentarium. The 4-amino-1,2,4-triazole-3-thione scaffold has been selected as the starting chemical moiety in the design of a small library of ß-Lactamase inhibitors (BLIs) with extended activity profiles. The synthesised compounds have been validated in vitro against class A serine ß-Lactamase (SBLs) KPC-2 and class B1 metallo ß-Lactamases (MBLs) VIM-1 and IMP-1. Of the synthesised derivatives, four compounds showed cross-class micromolar inhibition potency and therefore underwent in silico analyses to elucidate their binding mode within the catalytic pockets of serine- and metallo-BLs. Moreover, several members of the synthesised library have been evaluated, in combination with meropenem (MEM), against clinical strains that overexpress BLs for their ability to synergise carbapenems.

19.
Sci Rep ; 9(1): 18629, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819099

RESUMO

Among multidrug-resistant bacteria, methicillin-resistant Staphylococcus aureus is emerging as one of the most threatening pathogens. S. aureus exploits different mechanisms for its iron supply, but the preferred one is acquisition of organic iron through the expression of hemoglobin (Hb) receptors. One of these, IsdB, belonging to the Isd (Iron-Regulated Surface Determinant) system, was shown to be essential for bacterial growth and virulence. Therefore, interaction of IsdB with Hb represents a promising target for the rational design of a new class of antibacterial molecules. However, despite recent investigations, many structural and mechanistic details of complex formation and heme extraction process are still elusive. By combining site-directed mutagenesis, absorption spectroscopy, surface plasmon resonance and molecular dynamics simulations, we tackled most of the so far unanswered questions: (i) the exact complex stoichiometry, (ii) the microscopic kinetic rates of complex formation, (iii) the IsdB selectivity for binding to, and extracting heme from, α and ß subunits of Hb, iv) the role of specific amino acid residues and structural regions in driving complex formation and heme transfer, and (v) the structural/dynamic effect played by the hemophore on Hb.


Assuntos
Proteínas de Transporte de Cátions/genética , Hemoglobinas/genética , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/genética , Resistência a Múltiplos Medicamentos/genética , Heme/genética , Humanos , Ferro/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Infecções Estafilocócicas/microbiologia
20.
Chemistry ; 25(47): 11080-11084, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31074543

RESUMO

Two novel NO photodonors (NOPDs) based on BODIPY and Rhodamine antennae activatable with the highly biocompatible green light are reported. Both NOPDs exhibit considerable fluorescence emission and release NO with remarkable quantum efficiencies. The combination of the photoreleasing and emissive performance for both compounds is superior to those exhibited by other NOPDs based on similar light-harvesting centres, making them very intriguing for image-guided phototherapeutic applications. Preliminary biological data prove their easy visualization in cell environment due to the intense green and orange-red fluorescence and their photodynamic action on cancer cells due to the NO photo-liberated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...