Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Nat Metab ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689023

RESUMO

The oxidative phosphorylation system1 in mammalian mitochondria plays a key role in transducing energy from ingested nutrients2. Mitochondrial metabolism is dynamic and can be reprogrammed to support both catabolic and anabolic reactions, depending on physiological demands or disease states. Rewiring of mitochondrial metabolism is intricately linked to metabolic diseases and promotes tumour growth3-5. Here, we demonstrate that oral treatment with an inhibitor of mitochondrial transcription (IMT)6 shifts whole-animal metabolism towards fatty acid oxidation, which, in turn, leads to rapid normalization of body weight, reversal of hepatosteatosis and restoration of normal glucose tolerance in male mice on a high-fat diet. Paradoxically, the IMT treatment causes a severe reduction of oxidative phosphorylation capacity concomitant with marked upregulation of fatty acid oxidation in the liver, as determined by proteomics and metabolomics analyses. The IMT treatment leads to a marked reduction of complex I, the main dehydrogenase feeding electrons into the ubiquinone (Q) pool, whereas the levels of electron transfer flavoprotein dehydrogenase and other dehydrogenases connected to the Q pool are increased. This rewiring of metabolism caused by reduced mtDNA expression in the liver provides a principle for drug treatment of obesity and obesity-related pathology.

2.
Nat Aging ; 3(11): 1430-1445, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37946043

RESUMO

Tissues within an organism and even cell types within a tissue can age with different velocities. However, it is unclear whether cells of one type experience different aging trajectories within a tissue depending on their spatial location. Here, we used spatial transcriptomics in combination with single-cell ATAC-seq and RNA-seq, lipidomics and functional assays to address how cells in the male murine liver are affected by age-related changes in the microenvironment. Integration of the datasets revealed zonation-specific and age-related changes in metabolic states, the epigenome and transcriptome. The epigenome changed in a zonation-dependent manner and functionally, periportal hepatocytes were characterized by decreased mitochondrial fitness, whereas pericentral hepatocytes accumulated large lipid droplets. Together, we provide evidence that changing microenvironments within a tissue exert strong influences on their resident cells that can shape epigenetic, metabolic and phenotypic outputs.


Assuntos
Epigenoma , Transcriptoma , Masculino , Camundongos , Animais , Transcriptoma/genética , Epigenoma/genética , Fígado/metabolismo , Hepatócitos/metabolismo , Metaboloma
3.
EMBO J ; 42(18): e113256, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37439264

RESUMO

Replication of the mitochondrial genome and expression of the genes it encodes both depend on a sufficient supply of nucleotides to mitochondria. Accordingly, dysregulated nucleotide metabolism not only destabilises the mitochondrial genome, but also affects its transcription. Here, we report that a mitochondrial nucleoside diphosphate kinase, NME6, supplies mitochondria with pyrimidine ribonucleotides that are necessary for the transcription of mitochondrial genes. Loss of NME6 function leads to the depletion of mitochondrial transcripts, as well as destabilisation of the electron transport chain and impaired oxidative phosphorylation. These deficiencies are rescued by an exogenous supply of pyrimidine ribonucleosides. Moreover, NME6 is required for the maintenance of mitochondrial DNA when the access to cytosolic pyrimidine deoxyribonucleotides is limited. Our results therefore reveal an important role for ribonucleotide salvage in mitochondrial gene expression.


Assuntos
Genes Mitocondriais , Pirimidinas , Pirimidinas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Nucleotídeos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Ribonucleotídeos/genética
5.
Methods Mol Biol ; 2675: 181-194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258764

RESUMO

Feeding of stable 13C-labeled compounds coupled to mass spectrometric analysis has enabled the characterization of dynamic metabolite partitioning in various experimental conditions. This information is particularly relevant for the study and functional understanding of brain metabolic heterogeneity. We here describe a protocol for the analysis of metabolic enrichment analysis upon feeding of murine acute cerebellar slices with 13C-labeled substrates.


Assuntos
Encéfalo , Camundongos , Animais , Marcação por Isótopo/métodos , Isótopos de Carbono/química , Espectrometria de Massas
6.
Cell Rep ; 42(4): 112332, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37002921

RESUMO

The metabolic plasticity of mitochondria ensures cell development, differentiation, and survival. The peptidase OMA1 regulates mitochondrial morphology via OPA1 and stress signaling via DELE1 and orchestrates tumorigenesis and cell survival in a cell- and tissue-specific manner. Here, we use unbiased systems-based approaches to show that OMA1-dependent cell survival depends on metabolic cues. A metabolism-focused CRISPR screen combined with an integrated analysis of human gene expression data found that OMA1 protects against DNA damage. Nucleotide deficiencies induced by chemotherapeutic agents promote p53-dependent apoptosis of cells lacking OMA1. The protective effect of OMA1 does not depend on OMA1 activation or OMA1-mediated OPA1 and DELE1 processing. OMA1-deficient cells show reduced glycolysis and accumulate oxidative phosphorylation (OXPHOS) proteins upon DNA damage. OXPHOS inhibition restores glycolysis and confers resistance against DNA damage. Thus, OMA1 dictates the balance between cell death and survival through the control of glucose metabolism, shedding light on its role in cancerogenesis.


Assuntos
Metaloendopeptidases , Peptídeo Hidrolases , Humanos , DNA/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Peptídeo Hidrolases/metabolismo
7.
Cell Metab ; 35(5): 786-806.e13, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37075752

RESUMO

Autophagy represents a key regulator of aging and metabolism in sensing energy deprivation. We find that fasting in mice activates autophagy in the liver paralleled by activation of hypothalamic AgRP neurons. Optogenetic and chemogenetic activation of AgRP neurons induces autophagy, alters phosphorylation of autophagy regulators, and promotes ketogenesis. AgRP neuron-dependent induction of liver autophagy relies on NPY release in the paraventricular nucleus of the hypothalamus (PVH) via presynaptic inhibition of NPY1R-expressing neurons to activate PVHCRH neurons. Conversely, inhibiting AgRP neurons during energy deprivation abrogates induction of hepatic autophagy and rewiring of metabolism. AgRP neuron activation increases circulating corticosterone concentrations, and reduction of hepatic glucocorticoid receptor expression attenuates AgRP neuron-dependent activation of hepatic autophagy. Collectively, our study reveals a fundamental regulatory principle of liver autophagy in control of metabolic adaptation during nutrient deprivation.


Assuntos
Hipotálamo , Neurônios , Camundongos , Animais , Proteína Relacionada com Agouti/metabolismo , Neurônios/metabolismo , Hipotálamo/metabolismo , Fígado/metabolismo , Nutrientes
8.
JCI Insight ; 8(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37014702

RESUMO

The prevalence of obesity and type 2 diabetes is growing at an alarming rate, including among pregnant women. Low-calorie sweeteners (LCSs) have increasingly been used as an alternative to sugar to deliver a sweet taste without the excessive caloric load. However, there is little evidence regarding their biological effects, particularly during development. Here, we used a mouse model of maternal LCS consumption to explore the impact of perinatal LCS exposure on the development of neural systems involved in metabolic regulation. We report that adult male, but not female, offspring from both aspartame- and rebaudioside A-exposed dams displayed increased adiposity and developed glucose intolerance. Moreover, maternal LCS consumption reorganized hypothalamic melanocortin circuits and disrupted parasympathetic innervation of pancreatic islets in male offspring. We then identified phenylacetylglycine (PAG) as a unique metabolite that was upregulated in the milk of LCS-fed dams and the serum of their pups. Furthermore, maternal PAG treatment recapitulated some of the key metabolic and neurodevelopmental abnormalities associated with maternal LCS consumption. Together, our data indicate that maternal LCS consumption has enduring consequences on the offspring's metabolism and neural development and that these effects are likely to be mediated through the gut microbial co-metabolite PAG.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animais , Camundongos , Masculino , Feminino , Humanos , Gravidez , Edulcorantes , Ingestão de Energia , Obesidade/metabolismo
9.
Cell Rep Med ; 4(1): 100897, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36652907

RESUMO

Feeding behavior must be continuously adjusted to match energy needs. Recent discoveries in murine models identified uridine as a regulator of energy balance. Here, we explore its contribution to the complex control of food intake in humans by administering a single dose of uridine monophosphate (UMP; 0.5 or 1 g) to healthy participants in two placebo-controlled studies designed to assess food behavior (registration: DRKS00014874). We establish that endogenous circulating uridine correlates with hunger and ensuing food consumption. It also dynamically decreases upon caloric ingestion, prompting its potential role in a negative feedback loop regulating energy intake. We further demonstrate that oral UMP administration temporarily increases circulating uridine and-when within the physiological range-enhances hunger and caloric intake proportionally to participants' basal energy needs. Overall, uridine appears as a potential target to tackle dysfunctions of feeding behavior in humans.


Assuntos
Ingestão de Energia , Fome , Humanos , Animais , Camundongos , Uridina , Ingestão de Energia/fisiologia , Fome/fisiologia , Uridina Monofosfato , Ingestão de Alimentos
10.
Nat Cell Biol ; 25(2): 246-257, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36658222

RESUMO

Coenzyme Q (or ubiquinone) is a redox-active lipid that serves as universal electron carrier in the mitochondrial respiratory chain and antioxidant in the plasma membrane limiting lipid peroxidation and ferroptosis. Mechanisms allowing cellular coenzyme Q distribution after synthesis within mitochondria are not understood. Here we identify the cytosolic lipid transfer protein STARD7 as a critical factor of intracellular coenzyme Q transport and suppressor of ferroptosis. Dual localization of STARD7 to the intermembrane space of mitochondria and the cytosol upon cleavage by the rhomboid protease PARL ensures the synthesis of coenzyme Q in mitochondria and its transport to the plasma membrane. While mitochondrial STARD7 preserves coenzyme Q synthesis, oxidative phosphorylation function and cristae morphogenesis, cytosolic STARD7 is required for the transport of coenzyme Q to the plasma membrane and protects against ferroptosis. A coenzyme Q variant competes with phosphatidylcholine for binding to purified STARD7 in vitro. Overexpression of cytosolic STARD7 increases ferroptotic resistance of the cells, but limits coenzyme Q abundance in mitochondria and respiratory cell growth. Our findings thus demonstrate the need to coordinate coenzyme Q synthesis and cellular distribution by PARL-mediated STARD7 processing and identify PARL and STARD7 as promising targets to interfere with ferroptosis.


Assuntos
Mitocôndrias , Ubiquinona , Transporte Biológico , Transporte de Elétrons , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Oxirredução , Ubiquinona/farmacologia , Ubiquinona/metabolismo , Proteínas de Transporte/metabolismo
11.
Cell Metab ; 34(11): 1875-1891.e7, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113464

RESUMO

Cardiomyopathy and heart failure are common manifestations in mitochondrial disease caused by deficiencies in the oxidative phosphorylation (OXPHOS) system of mitochondria. Here, we demonstrate that the cardiac-specific loss of the assembly factor Cox10 of the cytochrome c oxidase causes mitochondrial cardiomyopathy in mice, which is associated with OXPHOS deficiency, lysosomal defects, and an aberrant mitochondrial morphology. Activation of the mitochondrial peptidase Oma1 in Cox10-/- mice results in mitochondrial fragmentation and induction of the integrated stress response (ISR) along the Oma1-Dele1-Atf4 signaling axis. Ablation of Oma1 or Dele1 in Cox10-/- mice aggravates cardiomyopathy. ISR inhibition impairs the cardiac glutathione metabolism, limits the selenium-dependent accumulation of the glutathione peroxidase Gpx4, and increases lipid peroxidation in the heart, ultimately culminating in ferroptosis. Our results demonstrate a protective role of the Oma1-Dele1-mediated ISR in mitochondrial cardiomyopathy and link ferroptosis to OXPHOS deficiency and mitochondrial disease.


Assuntos
Alquil e Aril Transferases , Cardiomiopatias , Ferroptose , Camundongos , Animais , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Cardiomiopatias/metabolismo , Proteínas de Membrana/metabolismo , Metaloproteases/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(38): e2122969119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095209

RESUMO

Energy is essential for all cellular functions in a living organism. How cells coordinate their physiological processes with energy status and availability is thus an important question. The turnover of actin cytoskeleton between its monomeric and filamentous forms is a major energy drain in eukaryotic cells. However, how actin dynamics are regulated by ATP levels remain largely unknown in plant cells. Here, we observed that seedlings with impaired functions of target of rapamycin complex 1 (TORC1), either by mutation of the key component, RAPTOR1B, or inhibition of TOR activity by specific inhibitors, displayed reduced sensitivity to actin cytoskeleton disruptors compared to their controls. Consistently, actin filament dynamics, but not organization, were suppressed in TORC1-impaired cells. Subcellular localization analysis and quantification of ATP concentration demonstrated that RAPTOR1B localized at cytoplasm and mitochondria and that ATP levels were significantly reduced in TORC1-impaired plants. Further pharmacologic experiments showed that the inhibition of mitochondrial functions led to phenotypes mimicking those observed in raptor1b mutants at the level of both plant growth and actin dynamics. Exogenous feeding of adenine could partially restore ATP levels and actin dynamics in TORC1-deficient plants. Thus, these data support an important role for TORC1 in coordinating ATP homeostasis and actin dynamics in plant cells.


Assuntos
Citoesqueleto de Actina , Trifosfato de Adenosina , Proteínas de Arabidopsis , Arabidopsis , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosfatidilinositol 3-Quinases , Citoesqueleto de Actina/metabolismo , Actinas , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/fisiologia
13.
Plant Cell Physiol ; 63(9): 1285-1297, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35859344

RESUMO

Transcriptional reprogramming plays a key role in drought stress responses, preceding the onset of morphological and physiological acclimation. The best-characterized signal regulating gene expression in response to drought is the phytohormone abscisic acid (ABA). ABA-regulated gene expression, biosynthesis and signaling are highly organized in a diurnal cycle, so that ABA-regulated physiological traits occur at the appropriate time of day. The mechanisms that underpin such diel oscillations in ABA signals are poorly characterized. Here we uncover GIGANTEA (GI) as a key gatekeeper of ABA-regulated transcriptional and physiological responses. Time-resolved gene expression profiling by RNA sequencing under different irrigation scenarios indicates that gi mutants produce an exaggerated ABA response, despite accumulating wild-type levels of ABA. Comparisons with ABA-deficient mutants confirm the role of GI in controlling ABA-regulated genes, and the analysis of leaf temperature, a read-out for transpiration, supports a role for GI in the control of ABA-regulated physiological processes. Promoter regions of GI/ABA-regulated transcripts are directly targeted by different classes of transcription factors (TFs), especially PHYTOCHROME-INTERACTING FACTOR and -BINDING FACTOR, together with GI itself. We propose a model whereby diel changes in GI control oscillations in ABA responses. Peak GI accumulation at midday contributes to establishing a phase of reduced ABA sensitivity and related physiological responses, by gating DNA binding or function of different classes of TFs that cooperate or compete with GI at target regions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
14.
Elife ; 112022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35559794

RESUMO

Proliferating cells undergo metabolic changes in synchrony with cell cycle progression and cell division. Mitochondria provide fuel, metabolites, and ATP during different phases of the cell cycle, however it is not completely understood how mitochondrial function and the cell cycle are coordinated. CLUH (clustered mitochondria homolog) is a post-transcriptional regulator of mRNAs encoding mitochondrial proteins involved in oxidative phosphorylation and several metabolic pathways. Here, we show a role of CLUH in regulating the expression of astrin, which is involved in metaphase to anaphase progression, centrosome integrity, and mTORC1 inhibition. We find that CLUH binds both the SPAG5 mRNA and its product astrin, and controls the synthesis and the stability of the full-length astrin-1 isoform. We show that CLUH interacts with astrin-1 specifically during interphase. Astrin-depleted cells show mTORC1 hyperactivation and enhanced anabolism. On the other hand, cells lacking CLUH show decreased astrin levels and increased mTORC1 signaling, but cannot sustain anaplerotic and anabolic pathways. In absence of CLUH, cells fail to grow during G1, and progress faster through the cell cycle, indicating dysregulated matching of growth, metabolism, and cell cycling. Our data reveal a role of CLUH in coupling growth signaling pathways and mitochondrial metabolism with cell cycle progression.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Azul Alciano , Ciclo Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metáfase , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fenazinas , Fenotiazinas , RNA Mensageiro/metabolismo , Resorcinóis
15.
Sci Adv ; 8(10): eabi4797, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35263141

RESUMO

The mediobasal hypothalamus (MBH) is the central region in the physiological response to metabolic stress. The FK506-binding protein 51 (FKBP51) is a major modulator of the stress response and has recently emerged as a scaffolder regulating metabolic and autophagy pathways. However, the detailed protein-protein interactions linking FKBP51 to autophagy upon metabolic challenges remain elusive. We performed mass spectrometry-based metabolomics of FKBP51 knockout (KO) cells revealing an increased amino acid and polyamine metabolism. We identified FKBP51 as a central nexus for the recruitment of the LKB1/AMPK complex to WIPI4 and TSC2 to WIPI3, thereby regulating the balance between autophagy and mTOR signaling in response to metabolic challenges. Furthermore, we demonstrated that MBH FKBP51 deletion strongly induces obesity, while its overexpression protects against high-fat diet (HFD)-induced obesity. Our study provides an important novel regulatory function of MBH FKBP51 within the stress-adapted autophagy response to metabolic challenges.


Assuntos
Hipotálamo , Proteínas de Ligação a Tacrolimo , Autofagia , Dieta Hiperlipídica/efeitos adversos , Humanos , Hipotálamo/metabolismo , Obesidade/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
16.
Cell Rep ; 38(7): 110370, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172139

RESUMO

The transition between quiescence and activation in neural stem and progenitor cells (NSPCs) is coupled with reversible changes in energy metabolism with key implications for lifelong NSPC self-renewal and neurogenesis. How this metabolic plasticity is ensured between NSPC activity states is unclear. We find that a state-specific rewiring of the mitochondrial proteome by the i-AAA peptidase YME1L is required to preserve NSPC self-renewal. YME1L controls the abundance of numerous mitochondrial substrates in quiescent NSPCs, and its deletion activates a differentiation program characterized by broad metabolic changes causing the irreversible shift away from a fatty-acid-oxidation-dependent state. Conditional Yme1l deletion in adult NSPCs in vivo results in defective self-renewal and premature differentiation, ultimately leading to NSPC pool depletion. Our results disclose an important role for YME1L in coordinating the switch between metabolic states of NSPCs and suggest that NSPC fate is regulated by compartmentalized changes in protein network dynamics.


Assuntos
Células-Tronco Adultas/metabolismo , Autorrenovação Celular , Metaloendopeptidases/metabolismo , Mitocôndrias/enzimologia , Células-Tronco Neurais/metabolismo , Células-Tronco Adultas/citologia , Animais , Proliferação de Células , Ciclo do Ácido Cítrico , Ácidos Graxos/metabolismo , Deleção de Genes , Metaloendopeptidases/deficiência , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/ultraestrutura , Células-Tronco Neurais/citologia , Nucleotídeos/metabolismo , Oxirredução , Proteólise , Proteoma/metabolismo
17.
Sci Rep ; 12(1): 533, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017563

RESUMO

Stomata are epidermal pores formed by pairs of specialized guard cells, which regulate gas exchanges between the plant and the atmosphere. Modulation of transcription has emerged as an important level of regulation of stomatal activity. The AtMYB60 transcription factor was previously identified as a positive regulator of stomatal opening, although the details of its function remain unknown. Here, we propose a role for AtMYB60 as a negative modulator of oxylipins synthesis in stomata. The atmyb60-1 mutant shows reduced stomatal opening and accumulates increased levels of 12-oxo-phytodienoic acid (12-OPDA), jasmonic acid (JA) and jasmonoyl-L-isoleucine (JA-Ile) in guard cells. We provide evidence that 12-OPDA triggers stomatal closure independently of JA and cooperatively with abscisic acid (ABA) in atmyb60-1. Our study highlights the relevance of oxylipins metabolism in stomatal regulation and indicates AtMYB60 as transcriptional integrator of ABA and oxylipins responses in guard cells.


Assuntos
Oxilipinas
18.
EMBO Rep ; 23(1): e53054, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34779571

RESUMO

Cancer cells depend on mitochondria to sustain their increased metabolic need and mitochondria therefore constitute possible targets for cancer treatment. We recently developed small-molecule inhibitors of mitochondrial transcription (IMTs) that selectively impair mitochondrial gene expression. IMTs have potent antitumor properties in vitro and in vivo, without affecting normal tissues. Because therapy-induced resistance is a major constraint to successful cancer therapy, we investigated mechanisms conferring resistance to IMTs. We employed a CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats)-(CRISP-associated protein 9) whole-genome screen to determine pathways conferring resistance to acute IMT1 treatment. Loss of genes belonging to von Hippel-Lindau (VHL) and mammalian target of rapamycin complex 1 (mTORC1) pathways caused resistance to acute IMT1 treatment and the relevance of these pathways was confirmed by chemical modulation. We also generated cells resistant to chronic IMT treatment to understand responses to persistent mitochondrial gene expression impairment. We report that IMT1-acquired resistance occurs through a compensatory increase of mitochondrial DNA (mtDNA) expression and cellular metabolites. We found that mitochondrial transcription factor A (TFAM) downregulation and inhibition of mitochondrial translation impaired survival of resistant cells. The identified susceptibility and resistance mechanisms to IMTs may be relevant for different types of mitochondria-targeted therapies.


Assuntos
Sistemas CRISPR-Cas , DNA Mitocondrial , DNA Mitocondrial/genética , Regulação para Baixo , Edição de Genes , Mitocôndrias/genética , Mitocôndrias/metabolismo , Transcrição Gênica
19.
Front Mol Biosci ; 9: 1067296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685284

RESUMO

Introduction: The metabolic routes altered in Alzheimer's disease (AD) brain are poorly understood. As the metabolic pathways are evolutionarily conserved, the metabolic profiles carried out in animal models of AD could be directly translated into human studies. Methods: We performed untargeted Nuclear Magnetic Resonance metabolomics in hippocampus of McGill-R-Thy1-APP transgenic (Tg) rats, a model of AD-like cerebral amyloidosis and the translational potential of these findings was assessed by targeted Gas Chromatography-Electron Impact-Mass Spectrometry in plasma of participants in the German longitudinal cohort AgeCoDe. Results: In rat hippocampus 26 metabolites were identified. Of these 26 metabolites, nine showed differences between rat genotypes that were nominally significant. Two of them presented partial least square-discriminant analysis (PLS-DA) loadings with the larger absolute weights and the highest Variable Importance in Projection (VIP) scores and were specifically assigned to nicotinamide adenine dinucleotide (NAD) and nicotinamide (Nam). NAD levels were significantly decreased in Tg rat brains as compared to controls. In agreement with these results, plasma of AD patients showed significantly reduced levels of Nam in respect to cognitively normal participants. In addition, high plasma levels of Nam showed a 27% risk reduction of progressing to AD dementia within the following 2.5 years, this hazard ratio is lost afterwards. Discussion: To our knowledge, this is the first report showing that a decrease of Nam plasma levels is observed couple of years before conversion to AD, thereby suggesting its potential use as biomarker for AD progression.

20.
Plant Physiol ; 187(4): 2419-2434, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618078

RESUMO

Sulfur deficiency-induced proteins SDI1 and SDI2 play a fundamental role in sulfur homeostasis under sulfate-deprived conditions (-S) by downregulating glucosinolates. Here, we identified that besides glucosinolate regulation under -S, SDI1 downregulates another sulfur pool, the S-rich 2S seed storage proteins in Arabidopsis (Arabidopsis thaliana) seeds. We identified that MYB28 directly regulates 2S seed storage proteins by binding to the At2S4 promoter. We also showed that SDI1 downregulates 2S seed storage proteins by forming a ternary protein complex with MYB28 and MYC2, another transcription factor involved in the regulation of seed storage proteins. These findings have significant implications for the understanding of plant responses to sulfur deficiency.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Sementes/metabolismo , Sulfatos/metabolismo , Proteínas de Arabidopsis/metabolismo , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...