Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2431, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508475

RESUMO

Diodes are key elements for electronics, optics, and detection. Their evolution towards low dissipation electronics has seen the hybridization with superconductors and the realization of supercurrent diodes with zero resistance in only one direction. Here, we present the quasi-particle counterpart, a superconducting tunnel diode with zero conductance in only one direction. The direction-selective propagation of the charge has been obtained through the broken electron-hole symmetry induced by the spin selection of the ferromagnetic tunnel barrier: a EuS thin film separating a superconducting Al and a normal metal Cu layer. The Cu/EuS/Al tunnel junction achieves a large rectification (up to ∼40%) already for a small voltage bias (∼200 µV) thanks to the small energy scale of the system: the Al superconducting gap. With the help of an analytical theoretical model we can link the maximum rectification to the spin polarization (P) of the barrier and describe the quasi-ideal Shockley-diode behavior of the junction. This cryogenic spintronic rectifier is promising for the application in highly-sensitive radiation detection for which two different configurations are evaluated. In addition, the superconducting diode may pave the way for future low-dissipation and fast superconducting electronics.

2.
Phys Rev Lett ; 126(11): 117001, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33798345

RESUMO

Since the 1960s a deep and surprising connection has followed the development of superconductivity and quantum field theory. The Anderson-Higgs mechanism and the similarities between the Dirac and Bogoliubov-de Gennes equations are the most intriguing examples. In this last analogy, the massive Dirac particle is identified with a quasiparticle excitation and the fermion mass energy with the superconducting gap energy. Here we follow further this parallelism and show that it predicts an outstanding phenomenon: the superconducting Sauter-Schwinger effect. As in the quantum electrodynamics Schwinger effect, where an electron-positron couple is created from the vacuum by an intense electric field, we show that an electrostatic field can generate two coherent excitations from the superconducting ground-state condensate. Differently from the dissipative thermal excitation, these form a new macroscopically coherent and dissipationless state. We discuss how the superconducting state is weakened by the creation of this kind of excitations. In addition to shedding a different light and suggesting a method for the experimental verification of the Sauter-Schwinger effect, our results pave the way to the understanding and exploitation of the interaction between superconductors and electric fields.

3.
Phys Rev Lett ; 124(10): 106801, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216390

RESUMO

In the linear regime, thermoelectric effects between two conductors are possible only in the presence of an explicit breaking of the electron-hole symmetry. We consider a tunnel junction between two electrodes and show that this condition is no longer required outside the linear regime. In particular, we demonstrate that a thermally biased junction can display an absolute negative conductance, and hence thermoelectric power, at a small but finite voltage bias, provided that the density of states of one of the electrodes is gapped and the other is monotonically decreasing. We consider a prototype system that fulfills these requirements, namely, a tunnel junction between two different superconductors where the Josephson contribution is suppressed. We discuss this nonlinear thermoelectric effect based on the spontaneous breaking of electron-hole symmetry in the system, characterize its main figures of merit, and discuss some possible applications.

4.
Nano Lett ; 19(2): 652-657, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30398889

RESUMO

Semiconductor nanowires featuring strong spin-orbit interactions (SOI), represent a promising platform for a broad range of novel technologies, such as spintronic applications or topological quantum computation. However, experimental studies into the nature and the orientation of the SOI vector in these wires remain limited despite being of upmost importance. Typical devices feature the nanowires placed on top of a substrate which modifies the SOI vector and spoils the intrinsic symmetries of the system. In this work, we report experimental results on suspended InAs nanowires, in which the wire symmetries are fully preserved and clearly visible in transport measurements. Using a vectorial magnet, the nontrivial evolution of weak antilocalization (WAL) is tracked through all 3D space, and both the spin-orbit length l SO and coherence length lφ are determined as a function of the magnetic field magnitude and direction. Studying the angular maps of the WAL signal, we demonstrate that the average SOI within the nanowire is isotropic and that our findings are consistent with a semiclassical quasi-1D model of WAL adapted to include the geometrical constraints of the nanostructure. Moreover, by acting on properly designed side gates, we apply an external electric field introducing an additional vectorial Rashba spin-orbit component whose strength can be controlled by external means. These results give important hints on the intrinsic nature of suspended nanowire and can be interesting for the field of spintronics as well as for the manipulation of Majorana bound states in devices based on hybrid semiconductors.

5.
Nat Commun ; 8: 14984, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28401951

RESUMO

The Josephson effect is a fundamental quantum phenomenon where a dissipationless supercurrent is introduced in a weak link between two superconducting electrodes by Andreev reflections. The physical details and topology of the junction drastically modify the properties of the supercurrent and a strong enhancement of the critical supercurrent is expected to occur when the topology of the junction allows an emergence of Majorana bound states. Here we report charge transport measurements in mesoscopic Josephson junctions formed by InAs nanowires and Ti/Al superconducting leads. Our main observation is a colossal enhancement of the critical supercurrent induced by an external magnetic field applied perpendicular to the substrate. This striking and anomalous supercurrent enhancement cannot be described by any known conventional phenomenon of Josephson junctions. We consider these results in the context of topological superconductivity, and show that the observed critical supercurrent enhancement is compatible with a magnetic field-induced topological transition.

6.
Nat Nanotechnol ; 11(12): 1055-1059, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27618256

RESUMO

Multi-terminal superconducting Josephson junctions based on the proximity effect offer the opportunity to tailor non-trivial quantum states in nanoscale weak links. These structures can realize exotic topologies in several dimensions, for example, artificial topological superconductors that are able to support Majorana bound states, and pave the way to emerging quantum technologies and future quantum information schemes. Here we report the realization of a three-terminal Josephson interferometer based on a proximized nanosized weak link. Our tunnelling spectroscopy measurements reveal transitions between gapped (that is, insulating) and gapless (conducting) states that are controlled by the phase configuration of the three superconducting leads connected to the junction. We demonstrate the topological nature of these transitions: a gapless state necessarily occurs between two gapped states of different topological indices, in much the same way that the interface between two insulators of different topologies is necessarily conducting. The topological numbers that characterize such gapped states are given by superconducting phase windings over the two loops that form the Josephson interferometer. As these gapped states cannot be transformed to one another continuously without passing through a gapless condition, they are topologically protected. The same behaviour is found for all of the points of the weak link, confirming that this topology is a non-local property. Our observation of the gapless state is pivotal for enabling phase engineering of different and more sophisticated artificial topological materials.

7.
Sci Rep ; 5: 12260, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26193628

RESUMO

We propose the implementation of a Josephson Radiation Comb Generator (JRCG) based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. When the magnetic flux crosses a diffraction node of the critical current interference pattern, the superconducting phase undergoes a jump of π and a voltage pulse is generated at the extremes of the SQUID. Under periodic drive this allows one to generate a sequence of sharp, evenly spaced voltage pulses. In the frequency domain, this corresponds to a comb-like structure similar to the one exploited in optics and metrology. With this device it is possible to generate up to several hundreds of harmonics of the driving frequency. For example, a chain of 50 identical high-critical-temperature SQUIDs driven at 1 GHz can deliver up to a 0.5 nW at 200 GHz. The availability of a fully solid-state radiation comb generator such as the JRCG, easily integrable on chip, may pave the way to a number of technological applications, from metrology to sub-millimeter wave generation.

8.
Phys Rev Lett ; 114(6): 067001, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25723238

RESUMO

The concept of thermophase refers to the appearance of a phase gradient inside a superconductor originating from the presence of an applied temperature bias across it. The resulting supercurrent flow may, in suitable conditions, fully counterbalance the temperature-bias-induced quasiparticle current therefore preventing the formation of any voltage drop, i.e., a thermovoltage, across the superconductor. Yet, the appearance of a thermophase is expected to occur in Josephson-coupled superconductors as well. Here, we theoretically investigate the thermoelectric response of a thermally biased Josephson junction based on a ferromagnetic insulator. In particular, we predict the occurrence of a very large thermophase that can reach π/2 across the contact for suitable temperatures and structure parameters; i.e., the quasiparticle thermal current can reach the critical current. Such a thermophase can be several orders of magnitude larger than that predicted to occur in conventional Josephson tunnel junctions. In order to assess experimentally the predicted very large thermophase, we propose a realistic setup realizable with state-of-the-art nanofabrication techniques and well-established materials, based on a superconducting quantum interference device. This effect could be of strong relevance in several low-temperature applications, for example, for revealing tiny temperature differences generated by coupling the electromagnetic radiation to one of the superconductors forming the junction.

9.
Nano Lett ; 15(3): 1803-8, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25671540

RESUMO

We have studied mesoscopic Josephson junctions formed by highly n-doped InAs nanowires and superconducting Ti/Pb source and drain leads. The current-voltage properties of the system are investigated by varying temperature and external out-of-plane magnetic field. Superconductivity in the Pb electrodes persists up to ∼7 K and with magnetic field values up to 0.4 T. Josephson coupling at zero backgate voltage is observed up to 4.5 K and the critical current is measured to be as high as 615 nA. The supercurrent suppression as a function of the magnetic field reveals a diffraction pattern that is explained by a strong magnetic flux focusing provided by the superconducting electrodes forming the junction.

10.
Nanotechnology ; 24(24): 245201, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23680804

RESUMO

We report the realization of a ballistic Josephson interferometer. The interferometer is made from a quantum ring etched in a nanofabricated two-dimensional electron gas confined in an InAs-based heterostructure laterally contacted to superconducting niobium leads. The Josephson current flowing through the structure shows oscillations with h/e flux periodicity when threading the loop with a perpendicular magnetic field. This periodicity, in sharp contrast with the h/2e one observed in conventional dc superconducting quantum interference devices, confirms the ballistic nature of the device in agreement with theoretical predictions. This system paves the way for the implementation of interferometric Josephson π-junctions, and for the investigation of Majorana fermions.

11.
Nanotechnology ; 22(10): 105201, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21289399

RESUMO

We report the fabrication and characterization of superconducting quantum interference devices (SQUIDs) based on InAs nanowires and vanadium superconducting electrodes. These mesoscopic devices are found to be extremely robust against thermal cycling and to operate up to temperatures of ∼ 2.5 K with reduced power dissipation. We show that our geometry allows one to obtain nearly-symmetric devices with very large magnetic field modulation of the critical current. All these properties make these devices attractive for sensitive magnetometry applications and quantum circuit implementation.

12.
Phys Rev Lett ; 102(1): 017003, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19257229

RESUMO

We study quasiparticle energy relaxation at subkelvin temperatures by injecting hot electrons into an Al island and measuring the energy flux from quasiparticles into phonons both in the superconducting and in the normal state. The data show strong reduction of the flux at low temperatures in the superconducting state, in qualitative agreement with the theory for clean superconductors. However, quantitatively the energy flux exceeds the theoretical predictions both in the superconducting and in the normal state, suggesting an enhanced or additional relaxation process.

13.
Phys Rev Lett ; 101(7): 077004, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18764569

RESUMO

We demonstrate experimentally the manipulation of supercurrent in Al-AlOx-Ti Josephson tunnel junctions by injecting quasiparticles in a Ti island from two additional tunnel-coupled Al superconducting reservoirs. Both supercurrent enhancement and quenching with respect to equilibrium are achieved. We demonstrate cooling of the Ti line by quasiparticle injection from the normal state deep into the superconducting phase. A model based on heat transport and the nonmonotonic current-voltage characteristic of a Josephson junction satisfactorily accounts for our findings.

14.
Phys Rev Lett ; 92(13): 137001, 2004 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-15089638

RESUMO

The distinctive quasiparticle distribution existing under nonequilibrium in a superconductor-insulator-normal metal-insulator-superconductor mesoscopic line is proposed as a novel tool to control the supercurrent intensity in a long Josephson weak link. We present a description of this system in the framework of the diffusive-limit quasiclassical Green-function theory and take into account the effects of inelastic scattering with arbitrary strength. Supercurrent enhancement and suppression, including a marked transition to a pi junction, are striking features leading to a fully tunable structure.

15.
Phys Rev Lett ; 92(5): 056804, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14995329

RESUMO

We demonstrate both theoretically and experimentally two limiting factors in cooling electrons using biased tunnel junctions to extract heat from a normal metal into a superconductor. First, when the injection rate of electrons exceeds the internal relaxation rate in the metal to be cooled, the electrons do not obey the Fermi-Dirac distribution, and the concept of temperature cannot be applied as such. Second, at low bath temperatures, states within the gap induce anomalous heating and yield a theoretical limit of the achievable minimum temperature.

16.
Phys Rev Lett ; 87(21): 216808, 2001 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-11736368

RESUMO

Resonant transport is demonstrated in a hybrid superconductor-semiconductor heterostructure junction grown by molecular beam epitaxy on GaAs. This heterostructure realizes the model system introduced by de Gennes and Saint-James in 1963 [P. G. de Gennes and D. Saint-James, Phys. Lett. 4, 151 (1963)]. At low temperatures a single marked resonance peak is shown superimposed to the characteristic Andreev-dominated subgap conductance. The observed magnetotransport properties are successfully analyzed within the random matrix theory of quantum transport, and ballistic effects are included by directly solving the Bogoliubov-de Gennes equations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...