Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Forensic Sci Int Genet ; 72: 103093, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39013214

RESUMO

Short Tandem Repeat (STR) markers have been the gold standard for human identification testing in the forensic field for the last few decades. The GlobalFiler™ IQC PCR amplification Kit has shown sensitivity, high power of discrimination and is therefore widely used. Samples with limited DNA quantities remain a significant hurdle for streamlined human forensic identification. Reaction volume reduction in a closed system paired with automation can provide solutions to secure DNA profiles when routine methods fall short. We automated and optimized the GlobalFilerTM IQC PCR Amplification Kit on the Magelia®, a closed molecular biology platform, to test whether reaction volume reduction in a confined automated system would improve signal and sensitivity. We evaluated the platform's performance using reference and real casework samples (blood, cigarette butt, saliva and touch DNA) in the context of a 5-fold volume reduction when compared to the routine protocol. This strategy showed distinct advantages over standard treatment, notably increased signal for lower DNA inputs. Importantly, negative casework samples through routine treatment yielded "usable" DNA profiles after amplification using this strategy. This novel approach represents a first proof of concept for a method enabling users to treat limited samples, or to partition routine samples for multiple analyses.


Assuntos
Impressões Digitais de DNA , DNA , Repetições de Microssatélites , Reação em Cadeia da Polimerase , Humanos , Impressões Digitais de DNA/métodos , DNA/genética , Saliva/química , Tato
2.
Diagnostics (Basel) ; 14(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38248064

RESUMO

In forensic sciences, body fluids, or biological traces, are a major source of information, and their identification can play a decisive role in criminal investigations. Currently, the nature of biological fluids is assessed using immunological, physico-chemical, mRNA and epigenetic methods, but these have limits in terms of sensitivity and specificity. The emergence of next-generation sequencing technologies offers new opportunities to identify the nature of body fluids by determining bacterial communities. The aim of this pilot study was to assess whether analysis of the bacterial communities in isolated and mixed biological fluids could reflect the situation observed in real forensics labs. Several samples commonly encountered in forensic sciences were tested from healthy volunteers: saliva, vaginal fluid, blood, semen and skin swabs. These samples were analyzed alone or in combination in a ratio of 1:1. Sequencing was performed on the Ion Gene StudioTM S5 automated sequencer. Fluids tested alone revealed a typical bacterial signature with specific bacterial orders, enabling formal identification of the fluid of interest, despite inter-individual variations. However, in biological fluid mixtures, the predominance of some bacterial microbiomes inhibited interpretation. Oral and vaginal microbiomes were clearly preponderant, and the relative abundance of their bacterial communities and/or the presence of common species between samples made it impossible to detect bacterial orders or genera from other fluids, although they were distinguishable from one another. However, using the beta diversity, salivary fluids were identified and could be distinguished from fluids in combination. While this method of fluid identification is promising, further analyses are required to consolidate the protocol and ensure reliability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA