Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 338: 139500, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37480954

RESUMO

Gas-phase kinetics of the overall reactions of •OH and •Cl radicals with dihydrofuran-3(2H)-one (oxolan-3-one) and dihydro-2-methyl-3(2H)-furanone (2MTHF-3-one) were studied at 298 K and atmospheric pressure. The rate coefficients were determined using the relative method in a 480 L multipass glass reactor coupled to an FT-IR detection system. The rate coefficients found for oxolan 3-one and 2MTHF-one with •OH radicals (k1 and k2) and with •Cl atoms (k3 and k4) at 298 K and atmospheric pressure (in cm3 molecule-1 s-1) were: k1 = (1.86 ± 0.29) × 10-11, k2 = (2.64 ± 0.47) × 10-11, k3= (1.15 ± 0.28) × 10 -10, and k4 = (1.33 ± 0.32) × 10-10, respectively. Reactivity trends were developed by comparison with other similar structures and Fukui indices employed to determine the reactivity of different sites on the ring. The singularity of the reaction with •OH was assessed by computational studies which showed the formation of several stable hydrogen bonded complexes, explaining the difference with the reaction with the •Cl atom. SAR estimations of the rate coefficients were calculated and compared to the experimental values.


Assuntos
Pressão Atmosférica , Cloro , Cloro/química , Espectroscopia de Infravermelho com Transformada de Fourier , Oxirredução , Modelos Teóricos
2.
Chemosphere ; 323: 138156, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36796523

RESUMO

A product study was performed for the reaction of γ-caprolactone (GCL) and γ-heptalactone (GHL) initiated by OH radicals at (298 ± 2) K and atmospheric pressure, in presence of NOx. The identification and quantification of the products were performed in a glass reactor coupled with in situ FT-IR spectroscopy. The following products were identified and quantified with the corresponding formation yields (in %) for the OH + GCL reaction: peroxy propionyl nitrate (PPN) (52 ± 3), peroxy acetyl nitrate (PAN) (25 ± 1), and succinic anhydride (48 ± 2). For the GHL + OH reaction, the products detected with their corresponding formation yields (in %) were the following: peroxy n-butyryl nitrate (PnBN) (56 ± 2), peroxy propionyl nitrate (PPN) (30 ± 1) and succinic anhydride and (35 ± 1). Upon these results, an oxidation mechanism is postulated for the title reactions. The positions with the highest H-abstraction probabilities for both lactones are analyzed. Specifically, the increased reactivity of the C5 site, as indicated by structure reactivity estimations (SAR), is suggested by the identified products. For both GCL and GHL degradation appears to follow degradation paths including ring preservation and opening. The atmospheric implications of the APN formation as a photochemical pollutant and as NOx reservoirs of species is assessed.


Assuntos
Radical Hidroxila , Anidridos Succínicos , Espectroscopia de Infravermelho com Transformada de Fourier , Radical Hidroxila/química , Nitratos , Pressão Atmosférica , Lactonas , Compostos Orgânicos
3.
J Phys Chem A ; 126(38): 6751-6761, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36112102

RESUMO

Rate coefficients of the O3-initiated oxidation of allyl methyl sulfide (H2C═CHCH2SCH3, AMS) and allyl ethyl sulfide (H2C═CHCH2SCH2CH3, AES) were determined at atmospheric conditions by "in situ" FTIR. The relative kinetic experiments were performed using methylcyclohexane (McH) and carbon monoxide (CO) as nascent OH radical scavengers and in the absence of any scavenger, to determine the impact that the formation of OH radicals has on the rate coefficients. In the absence of scavengers, values of kAMS+O3 = (5.23 ± 3.57) × 10-18 and kAES+O3 = (5.76 ± 1.80) × 10-18 cm3 molecule-1 s-1 were obtained. In the presence of the scavengers, however, the rates decreased to kAMS+O3+McH = (3.92 ± 1.92) × 10-18 and kAMS+O3+CO = (2.63 ± 0.47) × 10-18 cm3 molecule-1 s-1 for AMS, and kAES+O3+McH = (4.78 ± 1.38) × 10-18 and kAES+O3+CO = (3.50 ± 0.27) × 10-18 cm3 molecule-1 s-1 for AES. On the basis of these results, we have decided to recommend the values obtained using CO as scavenger as those best representing the rate coefficient for the reactions of O3 with AMS and AES. The reaction mechanism was explored using DFT and post-Hartree-Fock computational methods. It is shown that the barrier for the common cyclization to primary ozonide (-3.7 ± 0.1 kcal mol-1) followed by other reactions, as well as that for the reaction with the sulfur atom (-5.1 ± 0.1 kcal mol-1), is small and quite close, meaning that both reaction paths should contribute significantly to the global reaction rate.

4.
Chemosphere ; 288(Pt 2): 132546, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34653479

RESUMO

Relative rate coefficients of the OH radical -initiated oxidation of allyl methyl sulfide (AMS, H2CCHCH2SCH3) and allyl ethyl sulfide (AES, H2CCHCH2SCH2CH3) have been measured at atmospheric pressure of synthetic air and 298 K: kAMS= (4.98 ± 1.42) and kAES= (6.88 ± 1.49) × 10-11 cm3 molecule-1 s-1 by means of in situ FTIR spectroscopy. In addition, the molar yields of the main reaction products of AMS with OH radicals formed in the absence and presence of nitric oxides (NOX) were determined to be the following: sulfur dioxide (95 ± 12) % and (51 ± 12) % for acrolein (50 ± 9) % and (41 ± 9) %. In the reaction of AES with OH radicals, the following molar yields were obtained: for sulfur dioxide (88 ± 13) % and (56 ± 12) % for acrolein (36 ± 9) % and (41 ± 9) %. The present results suggest that the abstraction at C3 plays an important role in the oxidation mechanism as the addition to the double bond. This work represents the first study of the OH radical interaction with AMS and AES carried out under atmospheric conditions. The atmospheric implications were discussed in terms of the atmospheric residence times of the sulfur-containing compounds studied and the products formed in the presence and absence of NOx. SO2 formation seems to be the main fate of the gas-phase allyl sulfides oxidation with significant acidifying potentials and short-chain aldehydes production like formaldehyde and acetaldehyde.


Assuntos
Física , Sulfetos , Compostos Alílicos , Cinética
5.
RSC Adv ; 11(21): 12739-12747, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35423798

RESUMO

A product study of the reactions of (E/Z)-1,2,3,3,3-pentafluoropropene ((E/Z)-CF3CF[double bond, length as m-dash]CHF) and hexafluoroisobutylene ((CF3)2C[double bond, length as m-dash]CH2) initiated by Cl atoms were developed at 298 ± 2 K and atmospheric pressure. The experiments were carried out in a 1080 L quartz-glass environmental chamber coupled via in situ FTIR spectroscopy to monitor the reactants and products. The main products observed and their yields were as follows: CF3C(O)F (106 ± 9)% with HC(O)F (100 ± 8)% as a co-product for (E/Z)-CF3CF[double bond, length as m-dash]CHF, and CF3C(O)CF3 (94 ± 5)% with HC(O)Cl (90 ± 7)% as a co-product for (CF3)2C[double bond, length as m-dash]CH2. Atmospheric implications of the end-product degradation are assessed in terms of their impact on ecosystems to help environmental policymakers consider HFOs as acceptable replacements.

6.
RSC Adv ; 9(39): 22618-22626, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35519461

RESUMO

Relative rate coefficients and product distribution of the reaction of 2-butanethiol (2butSH) with OH radicals and Cl atoms were obtained at atmospheric pressure and 298 K. The experiments were performed in a 480 L borosilicate glass photoreactor in synthetic air coupled to a long path "in situ" FTIR spectrometer. The rate coefficients obtained by averaging the values from different experiments were: k OH = (2.58 ± 0.21) × 10-11 cm3 per molecule per s and k Cl = (2.49 ± 0.19) × 10-10 cm3 per molecule per s. The kinetic values were compared with related alkyl thiols and homologous alkyl alcohols, where it was found that thiols react faster with both oxidants, OH radicals and Cl atoms. SO2 and 2-butanone were the major products identified for the reactions of 2-butanethiol with OH radicals and Cl atoms. The product yield of the reaction of 2-butanethiol and OH radicals were (81 ± 2)%, and (42 ± 1)% for SO2 and 2-butanone, respectively. For the reactions of 2-butanethiol with Cl atom, yields of SO2 and 2-butanone were (59 ± 2)% and (39 ± 2)%, respectively. A degradation mechanism was proposed for the pathways that leads to formation of identified products. The product distribution observed indicated that the H-atom of the S-H group abstraction channel is the main pathway for the reaction of OH radicals and Cl atoms with 2-butanethiol.

7.
J Phys Chem A ; 119(33): 8775-83, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26213280

RESUMO

The product distribution of the gas-phase reaction of OH radicals with methyl methacrylate (CH2═C(CH3)C(O)OCH3, MMA) in the absence of NOx was studied at 298 K and atmospheric pressure of air. The experiments were performed in a Teflon chamber using solid-phase microextraction (SPME) with GC-MS and GC-FID for product identification and quantification, respectively. In the absence of NOx, methyl pyruvate (CH3C(O)C(O)OCH3) was identified with a yield of 76 ± 13% in accordance with the decomposition of the 1,2-hydroxyalkoxy radicals formed. In addition, a detailed quantum chemical study of the degradation of MMA was performed by density functional theory (DFT) methods using the MPWB1K functional. This calculation suggests that formation of methyl pyruvate, from C1-C2 scission of 1,2-hydroxyalkoxy radical, is kinetically and thermodynamically the most favorable reaction path taking into account the electronic properties of reaction intermediates and transition states. The difference observed on the degradation mechanism of MMA in the presence and absence of NOx was explained in terms of the associated thermochemistry. Furthermore, this study propose that reaction between peroxy radical (RO2(•)) and hydroxyl radical (OH) became relevant at NOx-free environments. This statement is in agreement with recent studies concerning small peroxy radicals such as CH3OO(•).

8.
Environ Sci Technol ; 49(13): 7717-25, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26010217

RESUMO

A kinetic study of the gas-phase reactions of OH radicals with three unsaturated biogenic alcohols, (E)-3-hexen-1-ol, (Z)-3-hepten-1-ol, and (Z)-3-octen-1-ol, has been performed. The rate coefficients obtained are (in units of 10(-10) cm(3) molecule(-1) s(-1)) k1 (OH + (E)-CH2(OH)CH2CH═CHCH2CH3) = (1.14 ± 0.14), k2 (OH + (Z)-CH2(OH)CH2CH═CHCH2CH2CH3) = (1.28 ± 0.23), and k3 (OH + (Z)-CH2(OH)CH2CH═CHCH2CH2CH2CH3) = (1.49 ± 0.35). In addition, a product study on the reactions of OH with (E)-3-hexen-1-ol and (Z)-3-hepten-1-ol is reported. All the experiments were performed at (298 ± 2) K and 1 atm of NOx-free air in a 1080 L photoreactor with in situ FTIR detection of organics. This work constitutes the first kinetic study of the reactions of OH radicals with (Z)-3-hepten-1-ol and (Z)-3-octen-1-ol as well as the first determination of the fate of the hydroxy alkoxy radicals formed in the title reactions. An analysis of the available rates of addition of OH and Cl to the double bond of different unsaturated alcohols at 298 K has shown that they can be related by the expression log kOH = (0.29 ± 0.04) log kCl - 10.8. The atmospheric lifetimes of the alcohols studies were estimated to be around 1 h for reaction with OH radicals. The products formed in the title reactions are mainly carbonylic compounds that can contribute to the formation of ozone and PANs-type compounds in the troposphere.


Assuntos
Atmosfera/química , Heptanol/análogos & derivados , Hexanóis/química , Radical Hidroxila/química , Octanóis/química , Álcoois/química , Heptanol/química , Cinética , Relação Estrutura-Atividade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...